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Background

• Companies are collecting more and more data

• Mean and variance of numerical data are widely-used in:

Market Survey Healthcare 
Insurance

Real Estate
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Local Differential Privacy
Local Differential Privacy [Duchi et al. FOCS’13]: A randomized algorithm 𝑀
is 𝜖-LDP if and only if 

Pr 𝑀 𝑥! = 𝑡 ≤ 𝑒" Pr[𝑀 𝑥# = 𝑡]
where 𝑥! and 𝑥# are any pair of inputs in the domain.
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Mean and Variance Estimation

• Stochastic Rounding (SR) [Duchi et al. JASA’18]

• Piecewise Mechanism (PM) [Wang et al. ICDE’19]
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Workflow

𝑔! input 𝑥

AggregationPerturbation

User side Server side
𝑔" input 𝑥"

Users

Upload

Upload

D𝔼(𝑥)

D𝔼 𝑥(

Calculate statistics:
�̂� = D𝔼(𝑥)

G𝜎( = D𝔼 𝑥( − �̂�(



Data Poisoning Attack
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Existing Attacks

Our fine-grained attack: manipulate the statistics to an intended value

Goal: Promote targeted items by maximizing their 
associated statistics

Goal: Degrade estimation accuracy.

[Cheu et al. IEEE S&P’21]

[Cao et al. USENIX Security’21; Wu et al. USENIX 
Security’22]



Threat Model
Attack goal: Simultaneously modify the estimated mean �̂� and variance .𝜎#
through LDP protocols to target values �̂�I and .𝜎I#.

Attacker’s capabilities:
1. Estimate related statistics

• The number of users.
• The sum of users’ value
• The sum of squared users’ values

2. Inject fake users into LDP protocols

3. Manipulate input/output of LDP perturbation



Attack Example

Genuine 
Users

I want to do a 
market survey for 
mean/variance of 

users’ income
Target Group Income
Mean: ???
Variance: ???

I do not want 
to sacrifice 

privacy



Attack Example
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I know my 
customers 
better now!

Middle Class Income
Mean: $40,000
Variance: 151,321

Suitable
services
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increases!



Attack Example

LDP 
Randomizer

Genuine 
Output

Fake 
Values

Genuine 
Users

Fake 
Users

It is not what I 
thought. Let’s 

change our way to 
do business

Middle Class Income
Mean: $40,000
Variance: 151,321

Unfitted 
service

Profit drops

Mean → $30,100 
Variance → $60,000

Manipulated 
estimate result
Mean: $30,200
Variance: 59,036
Lower-Middle 
Class Income



Our Attack

input 𝑥

Aggregation
Perturbation
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Upload
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Baseline—Input Poisoning Attack (IPA)



Our Attack
Output Poisoning Attack (OPA) — Manipulate perturbation output directly



Error Analysis
Analyze attack error: 𝔼[ �̂�I − 𝜇I #] and 𝔼[ .𝜎I# − 𝜎I# #]

�̂�I, .𝜎I# : The final estimate of mean and variance

𝜇I, 𝜎I# : The target values set by the attacker

𝒫,𝑄, 𝒯LMNOP, 𝒯OQNOP, 𝒯LMROP, 𝒯OQROP : Intermediate constant 
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How do our attacks perform under different LDP protocols?



Error Analysis
Analyze attack error: 𝔼[ �̂�I − 𝜇I #] and 𝔼[ .𝜎I# − 𝜎I# #]

How do our attacks perform under different LDP protocols?

• When 𝜖 is small (large), it is easier to manipulate estimates in SR 
(PM) with small attack error.
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Error Analysis
Analyze attack error: 𝔼[ �̂�I − 𝜇I #] and 𝔼[ .𝜎I# − 𝜎I# #]

Does our OPA attack outperform the baseline by leveraging LDP characteristics?

• OPA is more effective with small attack error
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Privacy-security Relationship

Prior attacks

Privacy-security tradeoff: Higher
privacy (smaller 𝜖), lower security 
(better attack result).

Our attack

Privacy-security consistency: 
Higher privacy (smaller 𝜖), higher
security (worse attack result).

Strong privacy Weaker Security Strong privacy Strong Security



Privacy-security Consistency



Which is true?

Privacy-security tradeoff Privacy-security consistency



Which is true?
Both are correct!

The relationship depends on how you perform the attack and attack goal.

Our Attack

Intuition: Difficult to precisely 
manipulate the LDP estimates under 
large noise (small 𝜖)

Prior Attack

Intuition:
• Higher privacy facilitates attack [Cheu

et al. IEEE S&P’21];
• A smaller 𝜖 allows attacker to 

contribute more to the estimates [Cao 
et al. USENIX Security’21; Wu et al. 
USENIX Security’22]



Defense Exploration

Abnormal 
user subset

Benign 
user 
subset

Clustering-based mitigation
• The majority of users are benign
• Sample multiple subsets of users (sampling rate 𝑟)
• Cluster containing most subsets used for estimation

Metric
• Accuracy Gain (AG): 𝑀𝑆𝐸TUVWXU −𝑀𝑆𝐸YVIUX.
• Larger AG means better defense result



Mitigation Evaluation

• Sampling rate 𝑟 has an 
impact on defense;

• Fewer fake users makes 
mitigation easier

• The mitigation is more 
effective when the target 
values are farther away 
from the true values.



More Research Needed

Protocol Robustness Analysis

• Robustness of different LDP protocols under poisoning attacks

• Provides insights into future design

Defense Design

• Attack detection for fake values and fake users

• Fault tolerance



Conclusion

vWe propose fine-grained poisoning attacks for LDP protocols

vA disturbing fact for secure LDP setup: both privacy-security 
tradeoff and consistency are true

vWe propose the mitigation and highlight the urgent needs for
• Robust LDP design 
• More effective defenses



Thank you!


