
POLYFUZZ: Holistic Greybox Fuzzing of
Multi-Language Systems

Wen Li*, Jinyang Ruan*, Guangbei Yi*, Long Cheng+,
Xiapu Luo◊, Haipeng Cai*

*Washington State University
+Clemson University

◊The Hong Kong Polytechnic University

32ND USENIX
SECURITY SYMPOSIUM

2

● What is a multi-language (polyglot) system

Interactive language
components

Different features

Flexibility

Motivation – Methodology – Evaluation – Summary

3

● Multi-language software is prevalent and impactful

OS

Machine learning framework

Cloud/distributed computing

Scientific

Over 75% are
programmed with
multiple programming
languages

@
Java/c

Python/c

Java/c

Java/c

JavaScript,
Python, . NET

Motivation – Methodology – Evaluation – Summary

4

● Security of multi-language systems is critical

Security risks are consequential in multi-language systems!

→ Threats in single-language systems also exist in multi-language systems

→ Threats in multi-language systems go deeper due to the greater complexity

CVE-2021-33430, CVE-2021-41495, CVE-2021-41496,
CVE-2021-34141, CVE-2021-41497, CVE-2021-41500,
CVE-2021-41498, CVE-2021-41499

PolyCruise@USENIX Security22, Cross-language dynamic information flow analysis

Motivation – Methodology – Evaluation – Summary

https://www.usenix.org/system/files/sec22-li-wen.pdf

5

● An example of risk of buffer-overflow cross Python-C code

Motivation – Methodology – Evaluation – Summary

Data flow

6

● Vulnerability detection: fuzzing is powerful and effective

Program analysis

Fuzzing
techniques

Static analysis

Dynamic analysis

→ High false
positives

→ Limited inputs

→ Automated test generation

→ For functionality
testing

→ More chances to discover vulnerabilities

→ 16K+ vulnerabilities detected by Fuzzers in various
projects

Motivation – Methodology – Evaluation – Summary

7

● Existing fuzzing techniques are insufficient for multi-language systems

► Existing fuzzing techniques primarily target single-
language software

► Limitations when fuzzing multi-language systems
 → Feasibility for different languages

 → Inefficiency due to incomplete feedback

→ Reproducibility of vulnerabilities

► Limitations on efficiency

→ 95%↑ mutations would be redundant!

 → e.g., AFL/LibFuzzer for C program

Motivation – Methodology – Evaluation – Summary

8

● Challenges and design of PolyFuzz

→ Challenge-1:
How to generate inputs that effectively exercise information flow across heterogeneous language units?

Two primary challenges:

→ Challenge-2:
How to achieve comprehensive coverage while accommodating language extensibility?

Incorporate sensitivity analysis to guide seed generation

Run all heavy program analysis on a custom IR (SAIR) to minimize language-specific analysis

Motivation – Methodology – Evaluation – Summary

9

● Overview of PolyFuzz

Phase1

Phase3

Phase2

Instrumented program

constant branch constraints

Seeds ↑Covered branches ↓

multilingual program Initial seedsInputs:

PolyFuzz

Motivation – Methodology – Evaluation – Summary

(SAIR, instrumentation
guidance)

Core
fuzzing

Sensitivity analysis &
seed generation

Static analyses &
instrumentation

10

● Example of Phase1: SAIR and instrumentation guidance

1. Minimized block-coverage
 (distinguish all execution paths):
→ [B1, B2, B4, B5]

2. Branch variable coverage:
→ [B1@s4]

→ [B1@s4,B2,B4,B5]
3. Merged guidance:

Motivation – Methodology – Evaluation – Summary

11

● Example of Phase2: the procedure of seed generation

Branch variables:
do: < 16
sn: == 256

do: 0 (true), 32 (false)
sn: 256 (true), 0 (false)

instantiate

31 0 16 … 84 …

Initial seed in 1-byte partition

0 1 2 3 4 5

in[0] = do
in[2] = sn/2

Sensitivity analysis

input

0,32 0 0,128 … 84 …

predict

0 0 0 … 84 … 0 0 128 … 84 …

32 0 0 … 84 … 32 0 128 … 84 …
New
seeds

Motivation – Methodology – Evaluation – Summary

12

Motivation – Methodology – Evaluation – Summary

● Regarding the effectiveness (#block, #bug)

Benchmark Jazzer Jazz-C-ext Atheris Atheris-C-ext PolyFuzz

10 Python-C (508.1 KLoC) ─ ─ (1278, 1) (5357, 3) (1946/7319, 11)

5 Java-C (230.5 KLoC) (1030, 0) (1577, 0) ─ ─ (1330/1976, 1)

Summary ↑(29.1%, 1) ↑(25.3%, 1) ↑(52.3%, 10) ↑(36.7%, 8) ─

Benchmark Jazzer Atheris Honggfuzz PolyFuzz

5 Java (332.3 KLoC) (12319,1) ─ ─ (13675, 1)

5 Python (545.7 KLoC) ─ (3964, 1) ─ (4782, 1)

5 C (1353.5 KLoC) ─ ─ (6430, 0) (7081, 0)

Summary ↑(11.0%, 0) ↑(20.1%, 0) ↑(10.1%, 0) ─

Multi-language
benchmarks

Single-language
benchmarks

Baselines: Jazzer (Java), Atheris (Python), Honggfuzz (C)

13

● Regarding the Vulnerabilities Discovered

Benchmark #Bug Symptom #CVE

Libsmbios 1 Segment fault 0

Pillow 1 out of memory 1

Ultrajson 1 segment fault 1

Aubio 1 memory leak 0

Bottleneck 7 segment fault 1

Jansi 1 out of memory 1

Pyyaml 1 recursion error 0

Javaparser 1 JVM hung 1

Summary 14 ─ 5

Motivation – Methodology – Evaluation – Summary

CVE ID

CVE-2022-34070

CVE-2022-34072

CVE-2022-34073

CVE-2022-34074

CVE-2022-34075

14

Motivation – Methodology – Evaluation – Summary

► PolyFuzz, a novel framework for holistic greybox fuzzing of multi-language software

→ Measurement of whole-system block coverage

→ Effective seed generation via sensitivity analysis

→ Language extensible

15

Thanks for Your Attention
Q & A

Presenter: Wen Li
Email: li.wen@wsu.edu

Code, Data, PoCs: https://github.com/Daybreak2019/PolyFuzz

mailto:li.wen@wsu.edu
https://github.com/Daybreak2019/PolyFuzz

