
1

Checking Passwords on Leaky Computers:
A Side Channel Analysis of Chrome’s
Password Leak Detection Protocol

Andrew Kwong, Walter Wang, Jason Kim, Jonathan Berger,
Daniel Genkin, Eyal Ronen, Hovav Shacham, Riad Wahby,
Yuval Yarom

2

Why Check for Compromised Passwords?

Credential Stuffing

6.9%

Enabled by Default!

3

Chrome’s Password Leak Detection

Hash-to-curve

Memory-hard Hashing

Private Set Intersection

Is Password Leak Detection secure

against side-channel attacks?

No!

4

The Protocol in a Nutshell

Memory-hard

Hashing:

Scrypt

PSI Step 1:

Hash-to-curve

PSI Step 2:

Blind with

Mod. Exp.

𝑸

*PSI: Private Set Intersection

𝑸𝒂

PSI Step 3:

Server

Computes

𝑷𝒂

(𝑷𝒂)𝒂
−𝟏
= 𝑷

PSI Step 4:

Unblind with

Mod. Inv.

5

The Protocol in a Nutshell

Memory-hard

Hashing:

Scrypt

PSI Step 1:

Hash-to-curve

𝑸

*PSI: Private Set Intersection

(𝑷𝒂)𝒂
−𝟏
= 𝑷

PSI Step 4:

Unblind with

Mod. Inv.

6

Let the Attacks Begin!

Memory-hard

Hashing:

Scrypt

PSI Step 1:

Hash-to-curve

𝑸

*PSI: Private Set Intersection

(𝑷𝒂)𝒂
−𝟏
= 𝑷

PSI Step 4:

Unblind with

Mod. Inv.

Native Adversary

7

Attacking Input-dependent Memory Accesses

Array V

hunter2

qwerty

123456

80% Exact Match Using 5 Traces

function scrypt(inp)
 X = init(inp)
 for i = 0 to N – 1
 j = int(X)
 temp = X ^ V[j]
 X = mix(temp)

rockyou.txt

5 sec.

Fast!

Slow…

14M

8

What About Browser-based Adversaries?

Memory-hard

Hashing:

Scrypt

PSI Step 1:

Hash-to-curve

𝑸

*PSI: Private Set Intersection

(𝑷𝒂)𝒂
−𝟏
= 𝑷

PSI Step 4:

Unblind with

Mod. Inv.

Native Adversary

Browser Adversary

9

Attacking Input-dependent Loop Iterations

function hash2curve(hash)
 point = RandomOracleSHA256(hash)
 while !OnCurve(point) do
 point = RandomOracleSHA256(point)
 …

(hunter2, 3)

(qwerty, 10)

(12345678, 4)

66% Recovery

5 Traces

rockyou.txt

Offline: Make Dictionary

5 sec.

14M

10

What Can a Malicious Server Do?

Memory-hard

Hashing:

Scrypt

PSI Step 1:

Hash-to-curve

𝑸

*PSI: Private Set Intersection

(𝑷𝒂)𝒂
−𝟏
= 𝑷

PSI Step 4:

Unblind with

Mod. Inv.

Native Adversary

Browser Adversary

Native + Server Adversary

11

Leaking the Blinded Point

𝑸

𝑸𝒂

(𝑷𝒂)𝒂
−𝟏
= 𝑷

BEEA
hunter2 → (-1, 7)

abc123 → (-2, -8)

qwerty → (5, 0)

34 ms

(𝑸𝒂)𝒂
−𝟏
= 𝑸

𝑸

𝒂−𝟏

14M

𝒂−𝟏

12

Constant-time Implementations!

The Final Picture

foo = arr[secret];

Thank you for listening!

Jason Kim

nosajmik@gatech.edu

𝑸

Modular

Inversion

Hash-to-

curve

Scrypt

Server

Browser

Native

	Slide 1: Checking Passwords on Leaky Computers: A Side Channel Analysis of Chrome’s Password Leak Detection Protocol
	Slide 2: Why Check for Compromised Passwords?
	Slide 3: Chrome’s Password Leak Detection
	Slide 4: The Protocol in a Nutshell
	Slide 5: The Protocol in a Nutshell
	Slide 6: Let the Attacks Begin!
	Slide 7: Attacking Input-dependent Memory Accesses
	Slide 8: What About Browser-based Adversaries?
	Slide 9: Attacking Input-dependent Loop Iterations
	Slide 10: What Can a Malicious Server Do?
	Slide 11: Leaking the Blinded Point
	Slide 12: The Final Picture

