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Why Check for Compromised Passwords?

Credential Stuffing

6.9%

Enabled by Default!
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Chrome’s Password Leak Detection

Hash-to-curve

Memory-hard Hashing

Private Set Intersection

Is Password Leak Detection secure 

against side-channel attacks?

No!
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The Protocol in a Nutshell
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Let the Attacks Begin!
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Attacking Input-dependent Memory Accesses

Array V

hunter2

qwerty

123456

80% Exact Match Using 5 Traces

function scrypt(inp)
    X = init(inp)
    for i = 0 to N – 1
        j = int(X)
        temp = X ^ V[j]
        X = mix(temp)

rockyou.txt

5 sec.

Fast!

Slow…

14M
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What About Browser-based Adversaries?
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Attacking Input-dependent Loop Iterations

function hash2curve(hash)
    point = RandomOracleSHA256(hash)
    while !OnCurve(point) do
        point = RandomOracleSHA256(point)
    …

(hunter2, 3)

(qwerty, 10)

(12345678, 4)

66% Recovery

5 Traces

rockyou.txt

Offline: Make Dictionary

5 sec.

14M
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What Can a Malicious Server Do?
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Leaking the Blinded Point

𝑸
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= 𝑷

BEEA
hunter2 → (-1, 7)

abc123 → (-2, -8)

qwerty → (5, 0)

34 ms
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14M
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Constant-time Implementations!

The Final Picture

foo = arr[secret];

Thank you for listening!

Jason Kim

nosajmik@gatech.edu
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