Pushed by Accident

A Mixed-Methods Study on Strategies of Handling Secrets in Source Code Repositories

Alexander KrauseC, Jan H. Klemmer*, Nicolas Huaman*, Dominik WermkeC, Yasemin Acar†,‡, and Sascha FahlC

CCISPA Helmholtz Center for Information Security, Hannover, Germany
*Leibniz University Hannover, Hannover, Germany
†Paderborn University, Paderborn, Germany
‡The George Washington University, Washington, DC, USA

#teamusec
Developers Must Provide and Handle Secrets Securely

• Version control systems (VCSs) are an essential technology for collaborative software development

• Git-based platforms such as GitHub or GitLab are the most used source code sharing platforms

• Developers need to provide secrets to e.g., deploy software, automate interactions with third parties, or handle authentication
Secrets are highly sensitive, e.g.,

- **credentials** e.g.,

uuid=admin, password=secretpwd

- **authentication tokens** e.g.,

 JalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY

- **secret encryption keys** e.g.,

 -----BEGIN OPENSSH PRIVATE
 KEY-----b3BlbnNzaC1rZXktdjEAAAAACmFlczI1Ni1jdHIAAAGYmNyeXB0AAAA
 GAAABBBjTZYaSZ....
Even the Big Players Fail

Toyota Suffered a Data Breach by Accidentally Exposing A Secret Key Publicly On GitHub

On October 7th, Toyota revealed a partial copy of their T-Connect source code had been accidentally exposed for 5 years, including access to data for over 290,000 customers.

GitHub Rotates Publicly Exposed RSA SSH Private Key

GitHub replaced the RSA SSH private key used to secure Git operations for GitHub.com after it was exposed in a public GitHub repository.

Security

Rogers’ internal passwords and source code found open on GitHub

HOWARD SOLOMON

JANUARY 24, 2020
Code Secret Leakage Becomes More and More Significant

GitGuardian: The State of Secrets Sprawl 2023 [1]

- 10M
 secrets occurrences detected in 2022
 (3M unique secrets)

- 1 in 10
 authors exposed a secret in 2022
 To err is human. Of the 13.3M distinct authors who pushed code to GitHub in 2022, 1.35M accidentally exposed a secret.

- 5.5
 commits out of 1,000 exposed at least one secret (+50%)
 3.7% of repositories active during 2022 leaked a secret
 - 61.2M repositories were active in 2022
 - 2.27M of those repositories leaked a secret

[1] GitGuardian
Code Secret Leakage Becomes More and More Significant

GitGuardian: The State of Secrets Sprawl 2023 [1]

- 10M secrets occurrences detected in 2022 (3M unique secrets)
- 1 in 10 authors exposed a secret in 2022
- 5.5 commits out of 1,000 exposed at least one secret (+50%)
 - 3.7% of repositories active during 2022 leaked a secret
 - 61.2M repositories were active in 2022
 - 2.27M of those repositories leaked a secret

Meli et al. presented a large-scale measurement study on secret leakage in public GitHub repositories, finding more than 100,000 repositories with leaked secrets. [2]

[1] GitGuardian

Research Questions
Research Questions

RQ1 How widespread is code secret leakage among developers?
Research Questions

RQ1 How widespread is code secret leakage among developers?

RQ2 What are secret leakage prevention approaches, and what are developers experiences?
Research Questions

RQ1 How widespread is code secret leakage among developers?

RQ2 What are secret leakage prevention approaches, and what are developers experiences?

RQ3 What are developers’ experiences with code secret leakage incidents?
Research Questions

RQ1 How widespread is code secret leakage among developers?

RQ2 What are secret leakage prevention approaches, and what are developers experiences?

RQ3 What are developers’ experiences with code secret leakage incidents?

RQ4 What are developers’ experiences with code secret remediation techniques and tools?
Methodology

Mixed-Methods Study

Online Developer Survey

Online Developer Interviews
Online Developer Survey

Recruitment

- $n = 109$ developers
 - 50 from Upwork
 - 59 from GitHub
Online Developer Survey

Recruitment

- n = 109 developers
 - 50 from Upwork
 - 59 from GitHub

Content of the Questionnaire

- Source code management
- Experience with secret information
- Threat model for secret information
- Secret leakage remediation approaches
- Secret leakage prevention approaches
- Demographics
Online Developer Survey

Recruitment
- n = 109 developers
 - 50 from Upwork
 - 59 from GitHub

Content of the Questionnaire
- Source code management
- Experience with secret information
- Threat model for secret information
- Secret leakage remediation approaches
- Secret leakage prevention approaches
- Demographics

Goals
- Identify the extent of code secret leakage
- Identify code secret leakage prevention & remediation approaches
Online Developer Interviews

Recruitment

- n = 14 developers from GitHub
 - Developers must have experienced code secret leakage
Online Developer Interviews

Recruitment

- n = 14 developers from GitHub
 - Developers must have experienced code secret leakage

Content of the Interview Guide

- Code secret leakage incidents
- Secret leakage remediation approaches
- Secret leakage prevention approaches
Recruitment

- n = 14 developers from GitHub
 - Developers must have experienced code secret leakage

Goals

Identify developers' problems, challenges, and needs with code secret leakage remediation & prevention approaches

Content of the Interview Guide

- Code secret leakage incidents
- Secret leakage remediation approaches
- Secret leakage prevention approaches
Selected Findings

Online Developer Survey

Online Developer Interviews
A Third Reported Secret Leakage

30.3% of our survey respondents reported first-hand experience with secret leakage in their projects.
Places and Types of Leaked Secrets

- Places of leak
 - Public repositories
 - Restricted repositories (internal)
 - Code sharing platforms like Pastebin or GitHub gist
 - GitHub workflow logs
Places and Types of Leaked Secrets

- **Places of leak**
 - Public repositories
 - Restricted repositories (internal)
 - Code sharing platforms like Pastebin or GitHub gist
 - GitHub workflow logs

- **Types of leak**
 - Configuration files
 - API tokens
 - Access keys
 - Database passwords

> “[I was] pushing the commits to GitHub and when I pushed the remote repository, I found that my [password manager database] has gone into GitHub without me wanting it to go to there.”— I10

Detected and Impact of Incidents

- **Leak Detection**
 - GitHub secret scanner
 - Randomly or by others
 - Incidents discovered lately

“It was probably out there for a couple of weeks. So, yes, that was not amazing.” — [111]
Detection and Impact of Incidents

- Leak Detection
 - GitHub secret scanner
 - Randomly or by others
 - Incidents discovered lately

- Impact
 - For the company or software team
 - Additional workload remediating the leak
 - Financial or reputational damage
 - External stakeholders
 - Data loss or data theft

“It was probably out there for a couple of weeks. So, yes, that was not amazing.” — I11
Root Causes of Code Secret Leakage Incidents

Root Causes

- No awareness of new developers in a team
- No use of any prevention approaches before an incident happened
- No use or misuse of the .gitignore file
- Use of hard-code secrets in source code
- Developers’ threat models and secret access process

“Even with all the technology […] to prevent secret leakage, the biggest contributor to secret leakage is the human factor, or negligence.” — I2

“Really just any time you ask, you’ll just get access to whatever you want.” — I6
Most Survey Respondents Renewed or Revoked Leaked Secrets

What approaches did our survey respondents use to remediate code secret leakage?

<table>
<thead>
<tr>
<th>Remediation Approach</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Renew or revoke secret</td>
<td>54.1%</td>
</tr>
<tr>
<td>Cleanup VCS history</td>
<td>17.4%</td>
</tr>
<tr>
<td>Analyze leak</td>
<td>15.6%</td>
</tr>
<tr>
<td>Removal from source code</td>
<td>11.0%</td>
</tr>
<tr>
<td>Notify concerned roles</td>
<td>7.3%</td>
</tr>
<tr>
<td>Access management</td>
<td>5.5%</td>
</tr>
<tr>
<td>Retract repository</td>
<td>4.6%</td>
</tr>
<tr>
<td>Systemic consequences</td>
<td>2.8%</td>
</tr>
<tr>
<td>Server operations</td>
<td>1.8%</td>
</tr>
</tbody>
</table>
Challenges Remediating Code Secret Leakage

- The process of remediation is cumbersome
- *Complicated* incident response process that was *never used before*
- Being *not aware* of all the consequences caused by the leak
- The need to *select, learn, and apply* different or *multiple* remediation approaches would be *too complex and time-consuming*
Survey Respondents Externalized, Blocked, and Encrypted Secrets

What approaches did our survey respondents use to prevent code secret leakage?

<table>
<thead>
<tr>
<th>Prevention Approaches</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Externalize secrets</td>
<td>55.0%</td>
</tr>
<tr>
<td>Block secrets</td>
<td>29.4%</td>
</tr>
<tr>
<td>Encrypted secrets</td>
<td>27.5%</td>
</tr>
<tr>
<td>Restrict access</td>
<td>17.4%</td>
</tr>
<tr>
<td>Monitoring</td>
<td>14.7%</td>
</tr>
<tr>
<td>Education & awareness</td>
<td>8.3%</td>
</tr>
<tr>
<td>Other</td>
<td>7.3%</td>
</tr>
<tr>
<td>Rotation</td>
<td>5.5%</td>
</tr>
<tr>
<td>Code & secret reviews</td>
<td>3.7%</td>
</tr>
</tbody>
</table>
Factors that Influence the Use of Prevention Approaches

- Participants reported approaches have to be:
 - Effective
 - Efficient
 - Secure
 - Usable
 - Compliant with company requirements
Challenges When Preventing Code Secret Leakage

- Cost and time constraints
 - Time to set up a new approach
 - Even more time is required to train all involved developers using the approach
 - Adopting new approaches to existing projects often requires refactoring work
Challenges When Preventing Code Secret Leakage

- **Cost and time constraints**
 - Time to set up a new approach
 - Even more time is required to train all involved developers using the approach
 - Adopting new approaches to existing projects often requires refactoring work

- **Awareness and education**

 “Someone was doing something off the books [...]:

 They were just creating another repository [...] not within the organization but maybe just under a personal account or something.

 Those you can’t really fix with tooling, at the end of the day, those are just people’s problems [...] and we can fix that through training [...] or policy.” — I6
Selected Recommendations

For Developers and Service Providers
Recommendations for Developers

Combination of different prevention approaches to decrease the likelihood of code secret leakage

- **Externalize secrets** e.g., using environment variables
- **Block secrets from repositories**, e.g., using .gitignore files
- **Monitoring** e.g., using secret scanners
- **Encrypt secrets** that need to be shared through the repository
Recommendations for Developers

Typical steps that should **always** be taken to remediate code secret leakage

- Renew or revoke the leaked secret
- Analyze the leak
- Revise the access management using the results from the leak analysis
- Notify the concerned roles
- In addition
 - Removal from source code
 - Cleaning up the VCS history
Recommendations for Service Providers

- Improving online information and documentation
- Provide and expand secret scanning
Pushed by Accident

A Mixed-Methods Study on Strategies of Handling Secrets in Source Code Repositories

Alexander Krause, Leon Kleinert, Nicole Huemann, Dominik Liermann, Vasilis Acan & J. von der Lieth

Abstract

The study presents findings from a mixed-methods study on the strategies used by developers for handling secrets in source code repositories. The study reveals that developers often face challenges in managing secrets, leading to incidents of secret leakage. The research also highlights the need for better strategies to prevent such incidents.

Keywords

Secrets in source code repositories, incident handling, secret leakage, code management, software development.