FABRID: Flexible Attestation-Based Routing for Inter-Domain Networks

Cyrill Krähenbühl*, Marc Wyss*, David Basin*, Vincent Lenders†, Adrian Perrig*, Martin Strohmeier†

*ETH Zürich, †Armasuisse
Users have no control over their Internet traffic!
Desired property 1: Send traffic along trustworthy devices

Encrypt and Send over trustworthy devices!
Desired Property 2: Geofencing
Goals

Network endpoints communicating via the Internet can select device-level forwarding paths meeting their individual criteria.

Examples:

1. Only route traffic along trustworthy devices, e.g., devices manufactured by Extreme Networks
2. Only route traffic within the US
3. Only route traffic along devices that have a specific hardware capability, e.g., supporting Precision Time Protocol (PTP)
How to achieve Inter-Domain Device-Level Path Control?

- SCION
- TPR (Trusted Path Routing)
- FABRID (Flexible Attestation-Based Routing on Inter-Domain Networks)
FABRIDI Workflow

Control Plane:
- Distribute each network’s **internal routing information** to endpoints
- Endpoints select routes satisfying their criteria

Data Plane:
- Endpoints **encode** network + internal routing information **in the packet header**
Challenge for the Control Plane: Don’t release sensitive information of operator

Solution:

• Each network operator can decide how much information to release via routing policies

• Policies are specified in first-order logic formulas
 \[\text{Pol}(r) := \text{manufacturer}(r) = \text{Extreme Networks} \land \exists c \in C: \text{software}(r, c) \land \text{name}(c) = \text{EXOS} \]

Problem:
Should not disclose internal network topology
Relevant Router Policy Properties

- Manufacturer
- Hardware
- Software (+ patch level)
- Geolocation
- Jurisdiction
- CO₂ Emissions

Verifiable via remote router attestation
Challenge for the Control Plane: Distribute policy information

Problem:
Policy dissemination to endpoints must be **scalable** and introduce **little overhead**

Solution:
• Piggy-back policy information on SCION routing messages
• Only disseminate changed policy information
• Reuse common policies among multiple networks
Challenge for the Data Plane: Secrecy and Authenticity of policies in packet header

Problem:
On-path attackers can learn and modify embedded policies

Solution:
• Encrypt embedded policies
• Authenticate encrypted policies
• On a per-packet basis
• All operations use efficient symmetric cryptography
Evaluation

- Border Router Forwarding: Up to 160Gbps with fewer than 16 cores
- Endhost Traffic Generation: Over 1Gbps with a single core (h: path length)
Conclusion

• FABRID enables flexible inter-domain path control at the granularity of individual routers by leveraging remote attestation and SCION

• Enables many new use cases:
 • Geo-fencing
 • Routing over trustworthy network infrastructure
 • Routing over devices with specific hardware capabilities

• FABRID needs support from network operators and SCION deployment, but is incrementally deployable providing incentives for early adopters

Thank you for your attention!

Cyrill Krähenbühl
PhD Candidate
ETH Zürich
cyrill.kraehenbuehl@inf.ethz.ch