INTENDER: Fuzzing Intent-Based Networking with Intent-State Transition Guidance

Jiwon Kim¹, Benjamin E. Ujcich², and Dave (Jing) Tian¹ ¹Purdue University ²Georgetown University

USENIX Security 2023

Vulnerabilities in SDN and IBN

Fuzzing Programs

Fuzzing IBN [1/3]

I. Bug Study in ONOS IBN

I. Bug Study in ONOS IBN

Semantic Syntactic Intent-Based Networking Semantic bugs often do not cause program crashes We need domain-specific detection methods

Fuzzing IBN [2/3]

Many Semantic Bugs

II. Limitation in Input Generation

GEORGETOWN

Fuzzing IBN [3/3]

Many Semantic Bugs

III. Limitation in Code-Coverage Guidance

GEORGETOWN

PurSec Lab

III. Limitation in Code-Coverage Guidance

Limitations in Fuzzing IBN

Intender: Fuzzing IBN

Intent-State Transition Guidance (ISTG)

Evaluation (1/2)

- Environment Setup
 - Google Cloud VM: 4 vCPU, 16GB MEM, 60GB SSD
 - ONOS v2.5.1

PurSec Lab

- Found 12 new bugs (11 security-critical CVEs)
 - 9 semantic bugs
 - Security impacts: network-wide denial of service & tampering
- Compare 4 existing fuzzers (AFL, Jazzer, Zest, PAZZ)
 - Up to **2.2**× better in branch coverage
 - Up to 82.6× more number of unique errors

Evaluation (2/2)

- Improve fuzzing performance compared to baselines
 - Topology-Aware Input Generation (TAIG) can produce
 78.7× more valid intents
 - Intent-Operation Dependency (IOD) can reduce 73.02% of redundant operations
 - Intent-State Transition Guidance (ISTG) leads to 1.8× more intent-state transitions than code coverage guidance (CCG)

Case Study: CVE-2022-24035

(1) Eve requests PURGE on INSTALLED intent

Case Study: CVE-2022-24035

(2) Eve exploits link-flooding attack

Case Study: CVE-2022-24035

(3) Intent **DOES NOT** respond to topology event any more \rightarrow **DoS**

PurSecLab

UNIVERSITY

Conclusions

- Analyzed **186 bugs** in ONOS IBN
- Designed new fuzzing techniques for IBN
 - Topology-Aware Intent Generation (TAIG)
 - Intent-Operation Dependency (IOD)
 - Intent-State Transition Guidance (ISTG)
- Developed Intender architecture
- Found 12 new bugs (11 CVEs) in ONOS IBN

Thank you!

WEBSITE

https://kjw6855.github.io

kim1685@purdue.edu

https://bit.ly/44SF9nJ