
PatchVerif: Discovering Faulty Patches

in Robotic Vehicles

Hyungsub Kim, Muslum Ozgur Ozmen,
Z. Berkay Celik, Antonio Bianchi, and Dongyan Xu

Purdue University

USENIX Security Symposium 2023

2

• Vehicles that move “autonomously” on the ground, in the
air, on the sea, under the sea, or in space

What are Robotic Vehicles (RVs)?
Background (1/2)

3

• Patches unintentionally breaking the software

functionality

• Mainly three different types of faulty patches:

What are Faulty Patches?
Background (2/2)

1) Partially fixing a buggy behavior

2) Fixing an incorrect behavior but breaking

another correct behavior

3) Adding a new feature but introducing a bug

Q: Why are faulty patches important in

Robotic Vehicles (RVs)?

5

• Writing patches for RV control software is error prone1)

• Developers reverted or fixed 345 faulty patches in ArduPilot

and PX4 in the past 5 years

• Faulty patches lead to unwanted physical behavior
• Mission failure

• Unstable attitude/position control

• Crashing on the ground

Motivation
Motivation (1/4)

1) H.S Kim et al., “PGPATCH: Policy-Guided Logic Bug Patching for Robotic Vehicles”, S&P 2022.

Q: Why is creating patches for RV

control software challenging?

A: Tracking patch-introduced behavioral

modifications is difficult.

7

Pivot Turn (1)
Motivation (2/4)

10 m/s

10 m/s

2 m/s

• When a rover is near a corner
• The vehicle should reduce its speed, turn towards the next

waypoint, and continue the navigation.

Waypoint

8

Pivot Turn (2)
Motivation (3/4)

10 m/s

10 m/s

2 m/s

• When a rover is near a corner
• The vehicle should reduce its speed, turn towards the next

waypoint, and continue the navigation.

Preventing

rollover accidents at

the pivot turn

9

Motivating Example

void Mode::navigate_to_waypoint() {

- float desired_speed = g2.wp_nav.get_speed();

+ float desired_speed = g2.wp_nav.get_desired_speed();

}

<A faulty patch in a RV control software>

Returns slower speed

while the RV gets

near to a waypoint

Returns a constant speed

set by a configuration

parameter

<Normal RV behavior before

deploying the faulty patch>

<Abnormal RV behavior after

deploying the faulty patch>

Motivation (4/4)

This RV can roll overed

due to its high speed.

Developers noticed the buggy

behavior only after three months

of deploying the faulty patch

Why do test cases created by

developers fail to detect the faulty patch?

11

• Manually created test cases do not exercise the physical
conditions that trigger the buggy behavior.

Test Cases Created by Developers

Condition 1: Creating a

sharp corner through

waypoints

Condition 2: Setting a

high ground speed

(e.g., 10 m/s)

Motivation (5/6)

Let's create test cases

based on a given patch!

Main Idea of PatchVerif

13

Overview of PatchVerif

Bug oracle

Faulty

patches

Find inputs

triggering the patch

Analyze the patch type

Mutate test

cases

Analyze the physical

impact of the patch

14

 Analyze Physical Impact of Patches

• We aim to infer
• An RV’s physical states that are affected by the patch
• Environmental conditions that affect the patch

<A patch implementing terrain-following for the CIRCLE flight mode>

Step 1:

Extract names of

variables and

functions in the patch

(1/3)

15

 Analyze Physical Impact of Patches

• We aim to infer
• An RV’s physical states that are affected by the patch
• Environmental conditions that affect the patch

Step 2: Filter out all

but nouns from the

variable/function

names

get_alt_frame

location

above_terrain

circle_center

…

center.get_alt_frame

location&

above_terrain

circle_center

…

(2/3)

After filtering process

16

 Analyze Physical Impact of Patches

• The patch changes
• The RV’s location, altitude, and flight mode states

• The patch is affected by
• Terrain environmental factor

Step 3: Match the

extracted terms with

RV physical states

and environmental

conditions in the

synonym table

We call these identified

states and environments
Physicalset

(3/3)

17

Overview of PatchVerif

Bug oracle

Faulty

patches

Find inputs

triggering the patch

Analyze the patch type

Mutate test

cases

Analyze the physical

impact of the patch

18

• Goal: Finding inputs (user commands/configuration parameters)
triggering the patch code snippet

• Executing inputs related to the identified Physicalset

 Find Inputs Triggering Patches

<A patch implementing terrain-following for the CIRCLE flight mode>

Physicalset: location, altitude, flight mode, terrain

CIRCLE flight mode triggers

the patch code snippet.

19

Overview of PatchVerif

Bug oracle

Faulty

patches

Find inputs

triggering the patch

Analyze the patch type

Mutate test

cases

Analyze the physical

impact of the patch

20

 Mutate Test Cases

1) Assign a value greater or lesser than default value to an input

(such as ground speed)

2) If it brings a negative impact, PatchVerif keeps

increasing/decreasing the input’s value

Run test case

on simulators

Patched

version

Mutate

test

case

Bug oracle

RVStates

Unpatched

version

Faulty patch

pool

(1/3)

21

 Mutate Test Cases

• Mutating the identified inputs to test the patch
• Increasing the rover’s speed (5 m/s)

<After deploying the faulty patch> <Before deploying the faulty patch>

3398 3175

0

2000

4000

Buggy Before buggy
patch

W
/s

ec
o

n
d

Battery consumption

9

5

0

5

10

Buggy Before buggy
patch

M
et

er
 (

m
)

Position error

(2/3)

After deploying

the faulty patch

Before deploying

the faulty patch

After deploying

the faulty patch

Before deploying

the faulty patch

22

• Mutating the identified inputs to test the patch
• Increasing the rover’s speed (10 m/s)

<After deploying the faulty patch> <Before deploying the faulty patch>

4457
3200

0

2000

4000

Buggy Before buggy
patch

W
/s

ec
o

n
d

Battery consumption

36

5

0

20

40

Buggy Before buggy patch

M
et

er
 (

m
)

Position error

 Bug Oracle (3/3)

After deploying

the faulty patch

Before deploying

the faulty patch

After deploying

the faulty patch

Before deploying

the faulty patch

23

• Dataset
• 1,000 patches

• We did not know whether they were faulty or correct.

Evaluation Results

• Results
• PatchVerif discovered 115 previously-unknown faulty patches
• 103 bugs have been acknowledged
• 51 bugs have been patched

24

A Bug in Dijkstra Object Avoidance Algorithm

Demo video: https://youtu.be/TWK5lFPlLB4

25

• Writing patches for RV software is error prone
• Identifying patch-introduced behavioral modifications is difficult

• PatchVerif
• Patch profiling

• Extracting inputs related to a patch

• Generate new test cases, by mutating patch-related inputs

• 115 previously-unknown faulty patches

Summary

Thank you! Questions?
kim2956@purdue.edu

https://github.com/purseclab/PatchVerif

I will be on the academic job market
in Fall 2023

mailto:kim2956@purdue.edu
https://github.com/purseclab/PatchVerif

27

Limitations of Previous Approaches

What about traditional fuzzers (AFL,

libFuzzer)?

• Bug oracle: Memory access violation

No

What about fuzzers for RVs?

• Mutation:

• Do not mutate waypoints

• Bug oracle:

• Require manually-specified notion

of what a “correct behavior” is

No

28

Q: Why do we use a name-based

matching rather than taint analysis?

A: Over-tainting issues

29

Physical Invariants as Bug Oracles

• PatchVerif expects that a correct patch should not

• Increase mission completion time (Timeliness)

• Increase battery consumption (Efficiency)

• Increase position errors (Precise navigation)

• Increase instability (Stability)

• Cause a new error states (State consistency)

30

 Analyzing Patch Type

31

 Bug Oracle

• Solution: Employ support vector machines (SVMs) to infer
whether a patch is faulty or correct

P1: Timeliness

P2: Efficiency

P3: Precise

 navigation

P4: Stability

P5: State

 consistency

32

• RV control software
• ArduPilot, PX4

Evaluation Results

• Dataset
• 80 already known correct patches
• 80 already known faulty patches

• Results
• PatchVerif achieved, on average, 94.9% F1-score

33

Analysis of the Discovered Bugs

Unstable

attitude/position control

Fail to finish a mission Crash into ground

Total (115) 36 (31.3%) 2 (1.7%) 77 (67%)

34

• While PatchVerif classifies patches as faulty, they are
actually correct patches

• 2 false positives
• Patched version shows increased position errors compared to

unpatched version. Yet, they are developers’ intension.
• e.g., sailboat and spline & straight waypoints

False Positives

35

• While PatchVerif classifies patches as correct, they are
actually faulty patches

• 6 false negatives
• Why? The 6 faulty patches do not impact the RV’s physical

behaviors
• e.g., Display messages, logging, and camera

False Negatives

36

• The RV’s object avoidance
• Dijkstra’s path planning algorithm

• Create safe areas around any object or geo-fenced location
• Find the shortest path

• “simple avoidance” algorithm
• Stop the RV or go backward if the RV enters a safety margin area

Case Study (Object Avoidance)

37

• Dijkstra’s path planning algorithm makes the RV enter
the safe area ()

Case Study (Object Avoidance Failure)

Safe area calculated

from the geo-fence

Geo-fence

Safety margin

“simple avoidance” algorithm causes the

RV to move backward because the RV

also enters the safety margin area ()

Result: Repeatedly move

back and forth near the

board of a margin area, and

it is unable to complete its

mission

	Slide 1: PatchVerif: Discovering Faulty Patches in Robotic Vehicles
	Slide 2: What are Robotic Vehicles (RVs)?
	Slide 3: What are Faulty Patches?
	Slide 4
	Slide 5: Motivation
	Slide 6
	Slide 7: Pivot Turn (1)
	Slide 8: Pivot Turn (2)
	Slide 9: Motivating Example
	Slide 10
	Slide 11: Test Cases Created by Developers
	Slide 12: Main Idea of PatchVerif
	Slide 13: Overview of PatchVerif
	Slide 14: Analyze Physical Impact of Patches
	Slide 15: Analyze Physical Impact of Patches
	Slide 16: Analyze Physical Impact of Patches
	Slide 17: Overview of PatchVerif
	Slide 18: Find Inputs Triggering Patches
	Slide 19: Overview of PatchVerif
	Slide 20: Mutate Test Cases
	Slide 21: Mutate Test Cases
	Slide 22: Bug Oracle
	Slide 23: Evaluation Results
	Slide 24: A Bug in Dijkstra Object Avoidance Algorithm
	Slide 25: Summary
	Slide 26: Thank you! Questions?
	Slide 27: Limitations of Previous Approaches
	Slide 28
	Slide 29: Physical Invariants as Bug Oracles
	Slide 30: Analyzing Patch Type
	Slide 31: Bug Oracle
	Slide 32: Evaluation Results
	Slide 33: Analysis of the Discovered Bugs
	Slide 34: False Positives
	Slide 35: False Negatives
	Slide 36: Case Study (Object Avoidance)
	Slide 37: Case Study (Object Avoidance Failure)

