

PORE: Provably Robust Recommender Systems against Data Poisoning Attacks

Jinyuan Jia¹, Yupei Liu², Yuepeng Hu², Neil Zhenqiang Gong² ¹Penn State University ²Duke University 08/09/2023 The first two authors made equal contribution.

Recommender Systems

- Widely deployed to engage users
 - Amazon, YouTube, TikTok, eBay
- Recommender system
 - Input: Rating-score matrix
 - Output: Recommended top-*N* items for each user
- Recommender system algorithm
 - Bayesian Personalized Ranking (BPR)
 - Item-based Recommendation (IR)
 - Neural Collaborative Filtering (NCF)

Recommender Systems

Recommender Systems are Vulnerable to Data Poisoning Attacks

- An attacker could inject fake users
 - By registering and maintaining fake accounts
- At most e fake users
 - Give an arbitrary rating score to an item
 - Rate as many items as the fake user wishes
- A poisoned recommender system makes attacker-desired, arbitrary recommendations.

Recommender Systems are Vulnerable to Data Poisoning Attacks

Limitations of Existing Defenses

- Empirical defenses
 - Cannot provide formal robustness guarantee
- Provable defenses
 - Designed for classifiers: Bagging
 - Suboptimal provable robustness guarantees

PORE: First Framework to Build Provably Robust Recommender Systems

- Create multiple sub-rating-score matrices
 - Each sub-rating-score matrix: rating scores of *s* randomly sampled users
- Build a base recommender system upon each sub-rating-score matrix
 - Use an arbitrary recommender system algorithm
- Build an ensemble recommender system
 - Majority vote

An Example for PORE

The Provable Robustness Guarantee of PORE

 $\mathcal{F}_{\mathcal{U}}$ A set of ground-truth items for a user u

 $\mathcal{L}(\boldsymbol{M}, e)$ A set of all possible poisoned rating-score matrices With a probability at least $1 - \alpha$, we have: $\min_{\boldsymbol{M}' \in \mathcal{L}(\boldsymbol{M}, e)} |\mathcal{E}_u \cap \mathcal{A}(\boldsymbol{M}', u)| \ge r_u$ poisoned rating-score matrix

Computing the Robustness Guarantee

• Formulating the computation of r_u as the following optimization problem:

$$r_{u} = \operatorname*{argmax}_{r' \in \{1, 2, \cdots, \min(k, N)\}} r'$$

s.t.
$$\underline{p}_{\mu_{r'}}^{*} > \min(\underset{c=1}{\overset{N-r'+1}{\min}} \frac{N' \cdot (\overline{p}_{\mathcal{H}_{c}}^{*} + \sigma)}{c}, \overline{p}_{\nu_{1}}^{*} + \sigma)$$

Recommender System Setup

- MovieLens-1M
 - 1,000,209 rating scores
 - 6,040 users and 3,952 items
- Base recommender system algorithm
 - BPR
- Parameter setting
 - **N'=1** (number of items recommended by a base recommender system)
 - **N=10** (number of items recommended by our ensemble recommender system)
 - *T***=100,000** (total number of base recommender systems)
 - α =0.001 (1- α is the confidence score)
 - **s=500** (number of users in each sub-rating-score matrix)

Evaluation Metrics

- Precision@N
 - The fraction of recommended items that are in the ground truth set of a user
- Recall@N
 - The fraction of items in the ground truth set that are recommended
- F1-Score@N
 - Tradeoff between Precision@N and Recall@N

Evaluation Metrics

Certified Precision@
$$N = \frac{r_u}{N}$$

Certified Recall@ $N = \frac{r_u}{|\mathcal{E}_u|}$
Certified F1-Score@ $N = \frac{2 \cdot r_u}{|\mathcal{E}_u| + N}$

PORE is Provably Robust against Data Poisoning Attacks

PORE Maintains Utility

Algorithm	Precision@10	Recall@10	F1-Score@10
BPR	0.324449	0.118385	0.144765
Ensemble BPR	0.362945	0.119441	0.151509

Our PORE maintains utility without attacks.

Time Complexity of PORE

Compared Method

Bagging

• State-of-the-art method to build provably robust classifier

PORE Outperforms the Existing Method

Summary

- We propose the first framework to build provably secure recommender systems
- Our PORE could be applied to an arbitrary recommender system algorithm
- Our PORE outperforms existing method extended from classifiers