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Recommender Systems

* Widely deployed to engage users
* Amazon, YouTube, TikTok, eBay

* Recommender system
* |nput: Rating-score matrix
e Output: Recommended top-N items for each user

 Recommender system algorithm
» Bayesian Personalized Ranking (BPR)
* |ltem-based Recommendation (IR)
* Neural Collaborative Filtering (NCF)
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Recommender Systems are Vulnerable
to Data Poisoning Attacks

* An attacker could inject fake users
* By registering and maintaining fake accounts

* At most e fake users
* Give an arbitrary rating score to an item
* Rate as many items as the fake user wishes

* A poisoned recommender system makes attacker-desired, arbitrary
recommendations.



Recommender Systems are Vulnerable
to Data Poisoning Attacks
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Limitations of Existing Defenses

* Empirical defenses
e Cannot provide formal robustness guarantee

* Provable defenses
* Designed for classifiers: Bagging
* Suboptimal provable robustness guarantees



PORE: First Framework to Build Provably
Robust Recommender Systems

* Create multiple sub-rating-score matrices
* Each sub-rating-score matrix: rating scores of s randomly sampled users

* Build a base recommender system upon each sub-rating-score matrix
e Use an arbitrary recommender system algorithm

e Build an ensemble recommender system
* Majority vote
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An Example for PORE

is

AN

S b

J

U, 4 0

i3

Ly lg _Uq:
Uy:

0 0|
- Uj:
0 4J Uy!
LUs:
Uy
N Uy
0 0 z
> U3z:
1 4 Uy:
4 .
L Us:
(Uq:
) u
0 O 2
> Uz
1 4 Uy:

J
\u5
rUuq:
Uy

1 4
—>U3
4 0 Uy:
Us

uy: {is}
Uy {is}
Majority i
Vote Uz g
uy: iz}

| Us: {is}

Top-1 Recommendation



The Provable Robustness Guarantee of PORE

gu A set of ground-truth items for a user u

L(M, e) A set of all possible poisoned rating-score matrices

) . The set of recommended items for user u
With a probability at least 1 — a, we have: by our ensemble recommender system

min |E,NAM u)| > r,
M cL(M.e)

/ certified intersection size
poisoned rating-score matrix



Computing the Robustness Guarantee

* Formulating the computation of r;, as the following
optimization problem:

/
r, = argmax r

r'e{l,2,--- min(k,N)}
N-r'+1N'- (P} +0O)

s.t. py,, > min( min 3 Py, T O)




Recommender System Setup

* MovieLens-1M
* 1,000,209 rating scores
* 6,040 users and 3,952 items

* Base recommender system algorithm
* BPR

* Parameter setting

N’=1 (number of items recommended by a base recommender system)

N=10 (number of items recommended by our ensemble recommender system)
T=100,000 (total number of base recommender systems)

a=0.001 (1- «a is the confidence score)

s=500 (number of users in each sub-rating-score matrix)



Evaluation Metrics

* Precision@N

* The fraction of recommended items that are in the ground truth set of a user

* Recall@N
* The fraction of items in the ground truth set that are recommended

* F1-Score@N
* Tradeoff between Precision@N and Recall@N



Evaluation Metrics
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PORE is Provably Robust against
Data Poisoning Attacks
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PORE =—>

PORE Maintains Utility

Algorithm Precision@10 | Recall@10 | F1-Score@ 10
BPR 0.324449 0.118385 0.144765
Ensemble BPR 0.362945 0.119441 0.151509

Our PORE maintains utility without attacks.
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Time Complexity of PORE
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Compared Method

* Bagging

» State-of-the-art method to build provably robust classifier



PORE Outperforms the Existing Method
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Summary

* We propose the first framework to build provably secure
recommender systems

* Our PORE could be applied to an arbitrary recommender system
algorithm

* Our PORE outperforms existing method extended from classifiers
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