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Recommender Systems

• Widely deployed to engage users
• Amazon, YouTube, TikTok, eBay

• Recommender system
• Input: Rating-score matrix
• Output: Recommended top-N items for each user

• Recommender system algorithm
• Bayesian Personalized Ranking (BPR)
• Item-based Recommendation (IR)
• Neural Collaborative Filtering (NCF)
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Recommender Systems
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Recommender Systems are Vulnerable
to Data Poisoning Attacks 

• An attacker could inject fake users
• By registering and maintaining fake accounts

• At most e fake users
• Give an arbitrary rating score to an item
• Rate as many items as the fake user wishes

• A poisoned recommender system makes attacker-desired, arbitrary 
recommendations.
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Recommender Systems are Vulnerable
to Data Poisoning Attacks 
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Limitations of Existing Defenses

• Empirical defenses
• Cannot provide formal robustness guarantee

• Provable defenses
• Designed for classifiers: Bagging
• Suboptimal provable robustness guarantees
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PORE: First Framework to Build Provably 
Robust Recommender Systems

• Create multiple sub-rating-score matrices
• Each sub-rating-score matrix: rating scores of 𝑠𝑠 randomly sampled users

• Build a base recommender system upon each sub-rating-score matrix
• Use an arbitrary recommender system algorithm

• Build an ensemble recommender system
• Majority vote
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An Example for PORE
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The Provable Robustness Guarantee of PORE
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poisoned rating-score matrix

The set of recommended items for user u 
by our ensemble recommender system

certified intersection size

A set of ground-truth items for a user u

A set of all possible poisoned rating-score matrices

With a probability at least 1 − 𝛼𝛼, we have:



Computing the Robustness Guarantee

• Formulating the computation of 𝑟𝑟𝑢𝑢 as the following 
optimization problem:
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Recommender System Setup

• MovieLens-1M
• 1,000,209 rating scores
• 6,040 users and 3,952 items

• Base recommender system algorithm
• BPR

• Parameter setting
• N’=1 (number of items recommended by a base recommender system)
• N=10 (number of items recommended by our ensemble recommender system)
• T=100,000 (total number of base recommender systems)
• 𝜶𝜶=0.001 (1- 𝛼𝛼 is the confidence score)
• s=500 (number of users in each sub-rating-score matrix)
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Evaluation Metrics
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• Precision@N
• The fraction of recommended items that are in the ground truth set of a user

• Recall@N
• The fraction of items in the ground truth set that are recommended

• F1-Score@N
• Tradeoff between Precision@N and Recall@N



Evaluation Metrics
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PORE is Provably Robust against 
Data Poisoning Attacks
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PORE Maintains Utility
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Our PORE maintains utility without attacks.

PORE



Time Complexity of PORE

16



Compared Method

• Bagging
• State-of-the-art method to build provably robust classifier
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PORE Outperforms the Existing Method
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Summary

• We propose the first framework to build provably secure 
recommender systems

• Our PORE could be applied to an arbitrary recommender system 
algorithm

• Our PORE outperforms existing method extended from classifiers
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