
Guarding Serverless
Applications with Kalium

Deepak Sirone Jegan*, Liang Wang+, Siddhant Bhagat#, Michael Swift*

* University of Wisconsin - Madison

+ Princeton University

Microsoft

1

Outline

• Serverless Computing
• Security in Serverless Computing
• Our Approach: Kalium
• Evaluation
• Conclusion

2

Serverless Computing

3

/deposit

/add_user

Application Logic

Validate Transaction

Validate User

Read Balance Error Logger

Compute Balance Write Balance

Write User

Data Store

Message Queue

1. Upcoming application deployment model in the cloud

2. Decompose large applications into stateless functions

3. Billing per-invocation of function

4

/deposit

/add_user

Application Logic

Validate Transaction

Validate User

Read Balance Error Logger

Compute Balance Write Balance

Write User

Data Store

Message Queue

Function Invocation

Message to Ext. Service

1. A path is a sequence of functions executed
in the application

2. Functions can be invoked from other
functions or external services: Purple
Arrows

3. A function can send messages to external
services: Green Arrows

4. Output of last function in a path is
returned to the application logic

Serverless Computing – Execution Paths

Outline

• Serverless Computing
• Security in Serverless Computing
• Our Approach: Kalium
• Evaluation
• Conclusion

5

Threat Model

6

/deposit

/add_user

Application Logic

Validate Transaction

Validate User

Read Balance Error Logger

Compute Balance Write Balance

Write User

Data Store

Message Queue

2. At least one serverless function has Remote Code

Execution bugs: Data input to application logic is

untrusted

1. Serverless Infrastructure is secure

Function Invocation

Message to Ext. Service

Attack Scenario 1

/deposit

/add_user

Application Logic

Validate Transaction

Validate User

Read Balance Error Logger

Compute Balance Write Balance

Write User

Data Store

Message Queue

Confidential Information Should not Flow to Unintended External Locations

User Balance

Bug $10

Attacker Controller Server

{Bug: $10}

Function Invocation

Message to Ext. Service

Attack Scenario 2

/deposit

/add_user

Application Logic

Validate Transaction

Validate User

Read Balance Error Logger

Compute Balance Write Balance

Write User

Data Store

Message Queue

Data Written to External Storage Should be the Result of a Valid Path

Invalid Transaction

User Balance

Bug $10

User Balance

Bug $Inv

Function Invocation

Message to Ext. Service

Insight for Attack Detection

Internal complex Control Flow is now observable at the network level

/deposit

/add_user

Application Logic

Validate Transaction

Validate User

Read Balance Error Logger

Compute Balance Write Balance

Write User

Data Store

Message Queue

Invalid Transaction

User Balance

Bug $10

User Balance

Bug $Inv

Prior Work including information flow control and web application firewalls do not consider order of functions in a path

Outline

• Serverless Computing
• Security in Serverless Computing
• Our Approach: Kalium
• Evaluation
• Conclusion

10

Kalium - Overview

Kalium: System to track paths and its validity in serverless applications

Application Profiling Stage: Build expected valid paths of each function and whole application

Enforce the valid paths: Augment the function runtime to intercept messages generated by a function

Idea: All executed paths in serverless application should be valid

Global Controller tracks current path in whole application

/deposit

/add_user

API Gateway

Validate Transaction

Validate User

Read Balance Error Logger

Compute Balance Write Balance

Write User

Data Store

Message Queue

Controller
Function Invocation

Message to Ext. Service

Kalium – Serverless Control Flow
Define Application Control Flow Graph and Function Control Flow Graph

• Application Control Flow Graph: Graph depicting order of function invocations in application

• Function Control Flow Graph: Graph depicting order of messages sent during execution of function

/deposit

/add_user

Application Logic

Validate Transaction

Validate User

Read Balance Error Logger

Compute Balance Write Balance

Write User

Data Store

Message Queue

Function Invocation

Message to Ext. Service

Application Control Flow
Application Control Flow Graph: Graph depicting order of function invocations in application

Edges between functions are labeled with URLs of destination function

Nodes are the functions in the application

/deposit

/add_user

Application Logic

Validate Transaction

Validate User

Read Balance Error Logger

Compute Balance Write Balance

Write User

Data Store

Message Queue

Function Invocation

Message to Ext. Service

/deposit

/add_user

API Gateway

Validate Transaction

Validate User

Read Balance Error Logger

Compute Balance Write Balance

Write User

Function Control Flow
Function Control Flow Graph: Graph depicting order of messages sent during execution of function

Edges between nodes are labeled with URLs of destination external services

Read Balance

Compute Balance

Data Store

Message Queue

Data Store

End

Nodes are internal function states before sending a message

def read_balance(transaction):

user_balance, err = getUserBalance(dataStore, transaction.user)

if err:

sendErr(queue, err)

else:

callComputeBalance(transaction, user_balance)

Each function is assumed to end in exactly one application sub-path

Start

Error Logger

Kalium - Implementation

A global controller maintains the position of the current function on application CFG

Once a function finishes execution, it checks with the global controller whether to allow outgoing edge

Intercept function messages at the network syscall level with augmented gVisor

Read Balance

Compute Balance

Data Store

Message Queue

gVisor

Data Store

End

Controller

/deposit

/add_user

API Gateway

Validate Transaction

Validate User

Read Balance Error Logger

Compute Balance Write Balance

Write User

Outline

• Serverless Computing
• Security in Serverless Computing
• Our Approach: Kalium
• Evaluation
• Conclusion

16

Evaluation – Attack Scenario 1 and 2

/deposit

/add_user

Application Logic

Validate Transaction

Validate User

Read Balance

Error Logger

Compute Balance Write Balance

Write User

Data Store

Message Queue

User Balance

Bug $10

gVisor

Controller

Attacker Controller Server

Function Invocation

Message to Ext. Service

Invalid Transaction

gVisor

Controller

Kalium – Performance Evaluation
Benchmarks: Valve Benchmarks

Comparison: Valve (IFC) [WWW ‘20] on gVisor, Trapeze (IFC) [OOPSLA ‘18] on gVisor

Geomean: 1.25, 1.40 and 2.90 across all benchmark functions/paths for Kalium, Valve and Trapeze resp.

0

1

2

3

4

5

6

receive* master-photos* master-request assign message record success report

R
el

at
iv

e
La

te
n

cy
 O

ve
rh

ea
d

Functions/Paths

Product Photos

Kalium Valve (gVisor) Trapeze (gVisor)

Evaluation of graph generation: More details in the paper

Conclusion

• Enforcing Control Flow is important for Serverless Application Security

• We present Kalium a Control Flow Integrity framework for Serverless Apps

• Kalium has reasonable performance overhead for enforcing Control Flow
Integrity

https://github.com/multifacet/kalium_artifact

Questions?

Deepak Sirone: dsirone@cs.wisc.edu

	Slide 1: Guarding Serverless Applications with Kalium
	Slide 2: Outline
	Slide 3: Serverless Computing
	Slide 4: Serverless Computing – Execution Paths
	Slide 5: Outline
	Slide 6: Threat Model
	Slide 7: Attack Scenario 1
	Slide 8: Attack Scenario 2
	Slide 9: Insight for Attack Detection
	Slide 10: Outline
	Slide 11: Kalium - Overview
	Slide 12: Kalium – Serverless Control Flow
	Slide 13: Application Control Flow
	Slide 14: Function Control Flow
	Slide 15: Kalium - Implementation
	Slide 16: Outline
	Slide 17: Evaluation – Attack Scenario 1 and 2
	Slide 18: Kalium – Performance Evaluation
	Slide 19: Conclusion

