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Serverless Computing
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1. Upcoming application deployment model in the cloud

2. Decompose large applications into stateless functions

3. Billing per-invocation of function



4

/deposit

/add_user

Application Logic

Validate Transaction

Validate User

Read Balance Error Logger

Compute Balance Write Balance

Write User

Data Store

Message Queue

Function Invocation

Message to Ext. Service

1. A path is a sequence of functions executed 
in the application

2. Functions can be invoked from other 
functions or external services: Purple 
Arrows

3. A function can send messages to external 
services: Green Arrows 

4. Output of last function in a path is 
returned to the application logic

Serverless Computing – Execution Paths
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Threat Model
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2.  At least one serverless function has Remote Code 

Execution bugs: Data input to application logic is 

untrusted

1. Serverless Infrastructure is secure

Function Invocation

Message to Ext. Service



Attack Scenario 1
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Function Invocation

Message to Ext. Service



Attack Scenario 2
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Insight for Attack Detection

Internal complex Control Flow is now observable at the network level
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Prior Work including information flow control and web application firewalls do not consider order of functions in a path
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Kalium - Overview

Kalium:  System to track paths and its validity in serverless applications

Application Profiling Stage:  Build expected valid paths of each function and whole application

Enforce the valid paths:  Augment the function runtime to intercept messages generated by a function

Idea:  All executed paths in serverless application should be valid

Global Controller tracks current path in whole application
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Kalium – Serverless Control Flow
Define Application Control Flow Graph and Function Control Flow Graph

• Application Control Flow Graph: Graph depicting order of function invocations in application

• Function Control Flow Graph: Graph depicting order of messages sent during execution of function
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Application Control Flow
Application Control Flow Graph: Graph depicting order of function invocations in application

Edges between functions are labeled with URLs of destination function 

Nodes are the functions in the application
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Function Control Flow
Function Control Flow Graph: Graph depicting order of messages sent during execution of function

Edges between nodes are labeled with URLs of destination external services 
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Compute Balance

Data Store

Message Queue

Data Store

End

Nodes are internal function states before sending a message

def read_balance(transaction):

user_balance, err = getUserBalance(dataStore, transaction.user)

if err:

sendErr(queue, err)

else:

callComputeBalance(transaction, user_balance)

Each function is assumed to end in exactly one application sub-path 

Start

Error Logger



Kalium - Implementation

A global controller maintains the position of the current function on application CFG

Once a function finishes execution, it checks with the global controller whether to allow outgoing edge

Intercept function messages at the network syscall level with augmented gVisor
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Evaluation – Attack Scenario 1 and 2
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Kalium – Performance Evaluation
Benchmarks: Valve Benchmarks

Comparison: Valve (IFC) [WWW ‘20] on gVisor, Trapeze (IFC) [OOPSLA ‘18] on gVisor

Geomean: 1.25, 1.40 and 2.90 across all benchmark functions/paths for Kalium, Valve and Trapeze resp.
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Evaluation of graph generation: More details in the paper



Conclusion

• Enforcing Control Flow is important for Serverless Application Security

• We present Kalium a Control Flow Integrity framework for Serverless Apps

• Kalium has reasonable performance overhead for enforcing Control Flow 
Integrity

https://github.com/multifacet/kalium_artifact 

Questions?

Deepak Sirone: dsirone@cs.wisc.edu
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