
AURC: Detecting Errors in Program Code and
Documentation

1/14

Peiwei Hu, Ruigang Liang, Ying Cao, Kai Chen, and Runze Zhang

SKLOIS, Institute of Information Engineering, CAS, China
School of Cyber Security, University of Chinese Academy of Sciences, China

Beijing Academy of Artificial Intelligence, China



1. Background 

Open-source libraries greatly affect the security of downstream software.

2/14

Open-source libraries as the fundamental

practical software
Log4Shell

CVE-2021-44228

Affect 1800+ products
pyramid



2. Previous Studies

3/14

Based on the

usage extracted

from documents

How to detect the bugs in libraries:

Based on majority

voting

Based on the

behavior in the

similar context



2. Previous Studies

4/14

Based on the

usage extracted

from documents

How to detect the bugs in libraries:

Based on majority

voting

Based on the

behavior in the

similar context

Documents are not trustworthy.

The majority voting is not trustworthy.

The usage in the similar context is not trustworthy.



3.1 Our Solution

5/14

API Usage Reference (AUR)

How experienced programmers find the usage facing the unfamiliar API

Read documents Scan the source code of API
Figure out how the existing
code uses the API

Document Callee Caller



3.1 Our Solution

6/14

API Usage Reference (AUR)

Focusing on Incorrect Return Check

-1 and > 0



7/14

1. Long call chain
2. Return statement location

Challenge：

A

B

D

C

E

Topological sorting
D E B C A

3.2 Analysis of Callee

heavy analysis

Context-sensitive 
Backtrace Prediction



8/14

1. Contain sentences that are irrelevant to the return values.
2. Documents may describe the return values in natural 
language.

Challenge：

Documents

Filter Out Irrelevant Sentences Mapping

3.2 Analysis of Documents

extract return values from 
documents

affect



9/14

Challenge：Which AUR should be modified facing inconsistency?

3.3 AUR should be modified



10/14

4 Experiments – Effectiveness 

False Positive: 12.1%

False Negative: 9.1%
529 code bugs 224 document defects



11/14

4 Experiments – Components

Performance of Classifier

Performance of CBP

= 12% 88% of code does not need to be analyzed

CBP can save the analysis of 99.94% paths= 0.06%

The average accuracy and recall are 
95.5% and 94.3%, respectively.



12/14

5 Practical Effectiveness

236 code patches and 103 document patches have been 
merged by maintainers.

We rank 25/810 in OpenSSL contributors with the help of 
findings of AURC

We get positive feedback from maintainers.



13/14

6 Summary

We propose a new method to detect defects in both code 
and documents. (cross-check three AURs)

We propose techniques to extract information from AURs 
including documents, callees, callers.

We test our prototype on real-world codebases. 236 code 
patches and 103 document patches have been merged by 
maintainers.



Thanks for your attention!

AURC: Detecting Errors in Program Code and
Documentation

14/14


