
Systematic Assessment of Fuzzers
using Mutation Analysis

Philipp Görz1 @phigo@mastodon.social

Björn Mathis1 @bjrnmath

Keno Hassler1

Emre Güler2 @emrexgueler

Thorsten Holz1 @thorstenholz

Andreas Zeller1 @andreaszeller

Rahul Gopinath3 @rahul@gopinath.org

1 CISPA Helmholtz Center for Information Security, Germany 2 Ruhr-University Bochum, Germany 3 University of Sydney, Australia



Fuzz Testing / Fuzzing

https://lcamtuf.coredump.cx/afl/

https://lcamtuf.coredump.cx/afl/


Evaluating Fuzzers

Co
mpar

abl
e

Un
bia

sed

Cu
sto

m Sub
jec

ts

Gu
ara

nte
ed

Fau
lts

<Approach>

3 USENIX — Systematic Assessment of Fuzzers using Mutation Analysis



Evaluating Fuzzers - Coverage?

https://github.com/gcovr/gcovr

https://github.com/gcovr/gcovr


Evaluating Fuzzers

Co
mpar

abl
e

Un
bia

sed

Cu
sto

m Sub
jec

ts

Gu
ara

nte
ed

Fau
lts

Coverage ✔ — — —

5 USENIX — Systematic Assessment of Fuzzers using Mutation Analysis



Evaluating Fuzzers - Finding New Bugs?

q
https://www.cve.org/

6 USENIX — Systematic Assessment of Fuzzers using Mutation Analysis

https://www.cve.org/


Evaluating Fuzzers

Co
mpar

abl
e

Un
bia

sed

Cu
sto

m Sub
jec

ts

Gu
ara

nte
ed

Fau
lts

Coverage ✔ — — —

New Bugs ✘ ✘ ✔ —

7 USENIX — Systematic Assessment of Fuzzers using Mutation Analysis



Evaluating Fuzzers - Refinding Known Bugs?

https://hexhive.epfl.ch/magma/

https://hexhive.epfl.ch/magma/


Evaluating Fuzzers

Co
mpar

abl
e

Un
bia

sed

Cu
sto

m Sub
jec

ts

Gu
ara

nte
ed

Fau
lts

Coverage ✔ — — —

New Bugs ✘ ✘ ✔ —
Known Bugs ✔ ✘ ✘ ✔

9 USENIX — Systematic Assessment of Fuzzers using Mutation Analysis



Mutation Testing / Mutation Analysis

Fuzzing Your Test Suite

10 USENIX — Systematic Assessment of Fuzzers using Mutation Analysis



Mutation Testing / Mutation Analysis

① unsigned int len = message_length(msg);

if (len ② < >= MAX_BUF_LEN ③ + 16) {

copy_message(msg);

} else {

// Invalid length , handle error

}

Ð
✔

$ e $ Ð
✘ ÿ

✔ q ?
11 USENIX — Systematic Assessment of Fuzzers using Mutation Analysis



Evaluating Fuzzers

Co
mpar

abl
e

Un
bia

sed

Cu
sto

m Sub
jec

ts

Gu
ara

nte
ed

Fau
lts

Coverage ✔ — — —

New Bugs ✘ ✘ ✔ —
Known Bugs ✔ ✘ ✘ ✔
Mutation Testing ✔ ✔ ✔ ✘

12 USENIX — Systematic Assessment of Fuzzers using Mutation Analysis



What’s the Problem?

• Computationally Expensive!
• Mutation Testing: Execute Test Generator (Fuzzer) for each Mutation
• Fuzzing: The More Executions the Better

13 USENIX — Systematic Assessment of Fuzzers using Mutation Analysis



Contributions

• Reduce Computational Costs
• Split Phases

• Coverage Fuzzing
• Mutation Fuzzing

• Supermutants
• Evaluate Multiple Mutations

with one Fuzzing Run

• Mutation Operators
• Traditional Operators
• Security Specific Operators

14 USENIX — Systematic Assessment of Fuzzers using Mutation Analysis



Results

• Coverage Accounts for most Mutants Detected

• ASAN Moderately Increases Number of Killed Mutants

• Mutations are Coupled to Real Faults

15 USENIX — Systematic Assessment of Fuzzers using Mutation Analysis



Code

Code is Publicly Available!

Interested? Talk to Us!

SBFT’24?!

github.com/CISPA-SysSec/mua_fuzzer_bench

github.com/CISPA-SysSec/mua_fuzzer_bench


Mutation Testing / Mutation Analysis

Fuzzing Your Test Suite

10 USENIX — Systematic Assessment of Fuzzers using Mutation Analysis

Evaluating Fuzzers

Co
mpar

abl
e

Un
bia

sed

Cu
sto

m Sub
jec

ts

Gu
ara

nte
ed

Fau
lts

Coverage ✔ — — —

New Bugs ✘ ✘ ✔ —
Known Bugs ✔ ✘ ✘ ✔
Mutation Testing ✔ ✔ ✔ ✘

12 USENIX — Systematic Assessment of Fuzzers using Mutation Analysis

Contributions

• Reduce Computational Costs
• Split Phases

• Coverage Fuzzing
• Mutation Fuzzing

• Supermutants
• Evaluate Multiple Mutations
with one Fuzzing Run

• Mutation Operators
• Traditional Operators
• Security Specific Operators

14 USENIX — Systematic Assessment of Fuzzers using Mutation Analysis

Code

Code is Publicly Available!

Interested? Talk to Us!

SBFT’24?!

github.com/CISPA-SysSec/mua_fuzzer_bench

17 USENIX — Systematic Assessment of Fuzzers using Mutation Analysis



Systematic Assessment of Fuzzers
using Mutation Analysis

Philipp Görz1 @phigo@mastodon.social

Björn Mathis1 @bjrnmath

Keno Hassler1

Emre Güler2 @emrexgueler

Thorsten Holz1 @thorstenholz

Andreas Zeller1 @andreaszeller

Rahul Gopinath3 @rahul@gopinath.org

1 CISPA Helmholtz Center for Information Security, Germany 2 Ruhr-University Bochum, Germany 3 University of Sydney, Australia



Compilation Procedure

Mutator

Base
Compiler

Unmutated
Executable

Mutated
Executable

Fuzzer
Compiler

Subject
(bitcode file)

Instrumented
Mutated

Exectuable

Mutation
Finder

Location
Executable

Mutation
IDs

Mutation IDs
for a Supermutant

Result of
Subject

Result of
Supermutant

Supermutant
(bitcode file)



Checking Procedure

Benchmark Manager

Crashing
Input

Mutation
killed?

Seeds Unmutated
Executable

Mutated
Executable

Fuzzer(s) Mutation
covered?

Instrumented
Mutated

Exectuable

1. Check if Seeds
(after Phase I)

already kill mutation(s)

4. Check if found
Crashing Input

kills Mutant

Run input to check that
crash does not happen

in unmutated executable

Run input to check if
crash can be confirmed

3. Fuzz using the fuzzer
respective executable

Run input to get
covered mutations

2. Use Seeds to start
Fuzzer (each Fuzzer is

initialized with
their respective seeds

after Phase I)



ASan Percentages

2.7%

24.7%24.7%

0.0%

5.5%

21.9%21.9%

0.0%

5.6%

21.1%21.1%

0.0%

16.2%

32.3%32.3%

1.8%

16.3%

32.1%32.1%

1.8%

18.0%

31.5%31.5%

0.9%

7.0%

22.2%22.2%

0.6%

7.5%

21.9%21.9%

0.5%

7.5%

22.4%22.4%

0.6%

6.7%

23.3%23.3%

3.0%

7.4%

25.0%25.0%

2.5%

7.3%

25.4%25.4%

2.0%

12.4%

18.4%18.4%
0.6%

12.6%

18.3%18.3%
0.6%

12.1%

18.5%18.5%
0.6%

10.4%

35.8%35.8%

1.7%

10.4%

35.0%35.0%

1.8%

10.0%

35.4%35.4%

1.2%

3.7%
17.1%17.1%

2.9%

3.6%
17.2%17.2%

3.0%

3.0%
16.8%16.8%

1.1%

cares_name cares_parse_reply curl guetzli libevent re2 woff2_new

aflpp
honggfuzz

libfuzzer

default asan default asan default asan default asan default asan default asan default asan

0%
10%
20%
30%
40%

0%
10%
20%
30%
40%

0%
10%
20%
30%
40%

P
er

ce
nt

ag
e 

of
 C

ov
er

ed
 M

ut
at

io
ns

 th
at

 a
re

 K
ill

ed

Found By asan default both



Supermutants Computational Reduction

Subject #Mutants #Supermutants Factor

Curl 29,118 5,804 5.02
Guetzli 22,961 13,040 1.76
Woff2 (New) 40,914 5,930 6.90
Cares (Name) 4,822 550 8.77
Cares (Parse Reply) 4,822 1,288 3.74
libevent 17,234 864 19.95
re2 21,407 9,670 2.21

Sum 141,278 37,146 3.80



Wallclock Time

CPU (Years) 4 Servers (Days)

Seed Collection 1.99 3.50
Default 14.37 25.22
Seed + Default 16.36 28.72
ASAN 15.16 26.61
24 Hours Runs 7.42 13.02

Sum 38.95 Years 68.34 Days

Four servers: Intel Xeon Gold 6230R CPU (52 cores) and 188 GB RAM.
Note that evaluating a single fuzzer takes 4.09 CPU years with our
chosen subjects ("Seed + Default" / #Fuzzers).



24 Hour Runs

Prog Total AFL AFL++ libFuzzer Honggfuzz

re2 104 0 0 0 0
Woff2 (New) 104 0 0 0 1
Curl 104 0 0 1 0
Guetzli 104 0 0 0 1
Libevent 104 0 0 0 0
Cares (Name) 66 0 0 0 0
Cares (Parse Reply) 104 0 0 0 0

Mutants killed during 24 hour runs on 104 stubborn mutants for each
subject using ASAN.



Not Independent Mutants

Program afl aflpp honggfuzz libfuzzer

Curl 4,850 5,836 4,851 3,852
Guetzli 10 24 16 0
Libevent 0 2 0 0
re2 39 66 37 47
Woff2 (New) 26 46 56 48
Cares (Name) 4 0 0 0
Cares (Parse Reply) 2 4 4 0

Number of mutants that were covered together with other mutants (i.e.,
mutants wrongly thought independent).


