
Isolated and Exhausted: Attacking Operating Systems via
Site Isolation in the Browser
32nd USENIX Security Symposium (2023)

Matthias Gierlings, Marcus Brinkmann, Jörg Schwenk
2023-08-11

Chair for Network and Data Security - Ruhr University Bochum

1

Isolated and Exhausted - Exploiting a browser security feature for attacks

How to use Site Isolation[1] to:
• DoS your browser
• DoS your OS
• Poison OS-DNS caches in the web-attacker model

2

Process-Per-Tab vs. Site Isolation

Process-Per-Tab Model

• Processes shared cross site.

Site Isolation

• One process per site.

3

Process-Per-Tab vs. Site Isolation

Process-Per-Tab Model

• Processes shared cross site
• Process creation requires user

interaction

Site Isolation

• One process per site
• Process creation automatic

4

Site Isolation provides attackers with
the power of process creation.

Site Isolation automatically creates processes

5

Site Isolation automatically creates processes

6

Site Isolation enables a fork bomb in the web-attacker model

7

Resource consumption of websites is monitored and limited by browsers

8

Why does the browser fail to detect
and prevent the Site Isolation fork
bomb?

Preventing the Site Isolation fork bomb is hard

Attribution problem
• No information who operates a site
• Every site must be isolated.

9

Preventing the Site Isolation fork bomb is hard

Attribution problem
• No information who operates a site
• Every site must be isolated.

Monitoring problem
• Sandboxed web content barely

consumes any resources
• Exhaustion caused by browser (Site

Isolation overhead)

10

Site Isolation provides access to
secondary resources

Site Isolation provides access to secondary resources

Excerpt from the Chromium source code [2]
// Experimentation shows that creating too many sockets creates odd problems
// because of resource exhaustion in the Unix sockets domain.
// Trouble has been seen on Linux at 3479 sockets in test, so leave a margin.
const int kMaxSimultaneousSockets = 3000;

11

Site Isolation provides access to secondary resources

Excerpt from the Chromium source code [2]
// Experimentation shows that creating too many sockets creates odd problems
// because of resource exhaustion in the Unix sockets domain.
// Trouble has been seen on Linux at 3479 sockets in test, so leave a margin.
const int kMaxSimultaneousSockets = 3000;

Potential problem: A global shared limit enables DoS via single site.

12

Site Isolation provides access to secondary resources

Excerpt from the Chromium source code [2]
// Experimentation shows that creating too many sockets creates odd problems
// because of resource exhaustion in the Unix sockets domain.
// Trouble has been seen on Linux at 3479 sockets in test, so leave a margin.
const int kMaxSimultaneousSockets = 3000;

Potential problem: A global shared limit enables DoS via single site.
Chromium limits sockets per-process.

Process-per-tab model
One window/tab can not DoS the browser

13

Site Isolation provides access to secondary resources

Excerpt from the Chromium source code [2]
// Experimentation shows that creating too many sockets creates odd problems
// because of resource exhaustion in the Unix sockets domain.
// Trouble has been seen on Linux at 3479 sockets in test, so leave a margin.
const int kMaxSimultaneousSockets = 3000;

Potential problem: A global shared limit enables DoS via single site.
Chromium limits sockets per-process.

Process-per-tab model
One window/tab can not DoS the browser.

Site Isolation
One window/tab can DoS the entire OS.

14

DNS Cache Poisoning in the web-attacker model

• DNS-Poisoning attack against a Windows 10 client . . .
• in ≈ 3.5 min median time . . .
• fastest attack iteration: 15 s

• Exhausting the UDP ephemeral port pool, bypassing resource limits via Site
Isolation

• The victim must use fixed DNS-Query port instead of a random one
• Misappropriating WebRTC to create many idle network sockets.

15

DNS Cache Poisoning in the web-attacker model

DNS-Poisoning by
Exhaustive
Misappropriation
Of
Network
Sockets

16

DNS Cache Poisoning in the web-attacker model

DNS-Poisoning by
Exhaustive
Misappropriation
Of
Network
Sockets

17

DEMONS in a nutshell

DEMONS Setup Phase - Exhaustion of the ephemeral port pool

Victim DEMONS

Webserver
(attacker.com)

http://evil.org

pQRY

https://attacker.com
DEMONS

 WebRTC sockets
https

Free UDP
ports

18

DEMONS Setup Phase - Exhaustion of the ephemeral port pool

Victim DEMONS

Webserver
(attacker.com)

http://evil.org

pQRY

https://attacker.com
DEMONS

 WebRTC sockets

 const int kMaxSimultaneousSockets = 3000;

https

Free UDP
ports

19

DEMONS Setup Phase - Exhaustion of the ephemeral port pool

Free UDP
ports

Victim DEMONS

Webserver
(attacker.com)

http://evil.org

pQRY

https://attacker.com
DEMONS

 WebRTC sockets

 const int kMaxSimultaneousSockets = 3000;
 attacker.com

 const int kMaxSimultaneousSockets = 3000;
 [2001:db8::2]

 const int kMaxSimultaneousSockets = 3000;
 [2001:db8::3]

 const int kMaxSimultaneousSockets = 3000;
 [2001:db8::4]

 const int kMaxSimultaneousSockets = 3000;
 [2001:db8::5]

 const int kMaxSimultaneousSockets = 3000;
 [2001:db8::6]

iframe
https:[2001:db8::2]

iframe
https:[2001:db8::3]

iframe
https:[2001:db8::4]

iframe
https:[2001:db8::5]

iframe
https:[2001:db8::6]

20

DEMONS Setup Phase - Leaking the DNS query port

Free UDP
ports

Victim DEMONS

Webserver
(attacker.com)

http://evil.org

pQRY

https://attacker.com
DEMONS

 WebRTC sockets

 const int kMaxSimultaneousSockets = 3000;
 attacker.com

 const int kMaxSimultaneousSockets = 3000;
 [2001:db8::2]

 const int kMaxSimultaneousSockets = 3000;
 [2001:db8::3]

 const int kMaxSimultaneousSockets = 3000;
 [2001:db8::4]

 const int kMaxSimultaneousSockets = 3000;
 [2001:db8::5]

 const int kMaxSimultaneousSockets = 3000;
 [2001:db8::6]

iframe
https:[2001:db8::2]

iframe
https:[2001:db8::3]

iframe
https:[2001:db8::4]

iframe
https:[2001:db8::5]

iframe
https:[2001:db8::6]

Poisoner

pQRYWebSocket

21

DEMONS Poisoning Phase - Sending spoofed responses

Victim

OS DNS-Resolver

DEMONS

DNSResponse1

DNSResponse2

DNSResponsen

...

Webserver
(attacker.com)

http://evil.org

pQRY

https://attacker.com
DEMONS

Poisoner
DNSResponsei

(IPM, pQRY, idTX, bank.com)

 WebRTC sockets

WebSocket
pQRY

https

22

DEMONS Poisoning Phase - Triggering the DNS query

Victim

OS DNS-Resolver

DEMONS

DNSResponse1

DNSResponse2

DNSResponsen

...

Webserver
(attacker.com)

DNS query for
“bank.com”

http://evil.org

pQRY

https://attacker.com
DEMONS

Poisoner
DNSResponsei

(IPM, pQRY, idTX, bank.com)

 WebRTC sockets

WebSocket
pQRY

https

XMLHttpRequest

23

DEMONS - State after a successful attack

Victim

OS DNS-Resolver

DEMONS

DNSResponse1

DNSResponse2

DNSResponsen

...

Cache entry
for “bank.com” after
successful attack

Webserver
(attacker.com)

Malicious Server
IPM = 2008::db8:1

DNS query for
“bank.com”

http://evil.org

pQRY

https://attacker.com
DEMONS

Poisoner
DNSResponsei

(IPM, pQRY, idTX, bank.com)

 WebRTC sockets

WebSocket
pQRY

https

XMLHttpRequest

24

The current state of Site Isolation

DEMONS (CVE-2020-6557) is mitigated via global port limit.
Drawbacks:

• May not suffice if multiple browsers are in use
• Global limit can enable DoS against browser

Site Isolation fork bomb is currently not mitigated.
Countermeasure1/PoC2 proposed.

1https://bugzilla.mozilla.org/show_bug.cgi?id=1722160, https://bugs.chromium.org/p/chromium/issues/detail?id=1094876
2Chromium only, submitted via bug tracker in August 2022

25

https://bugs.chromium.org/p/chromium/issues/attachmentText?aid=564512
https://bugzilla.mozilla.org/show_bug.cgi?id=1722160
https://bugs.chromium.org/p/chromium/issues/detail?id=1094876
https://bugs.chromium.org/p/chromium/issues/detail?id=1094876#c3

Fixing the Site Isolation fork bomb

26

Fixing the Site Isolation fork bomb

27

Fixing the Site Isolation fork bomb

28

Fixing the Site Isolation fork bomb

29

Fixing the Site Isolation fork bomb

30

Fixing the Site Isolation fork bomb

31

Fixing the Site Isolation fork bomb

PoC Mitigation with L = ∆L = 30
• Prevents fork bomb
• Prevents DoS on browser
• Unlikely to affect user experience

(tested against Tranco[3] Top 1000)
• Can utilize existing notification

mechanisms

32

Resources & Contact

Artifacts availablea

DOIDOI 10.5281/zenodo.735653810.5281/zenodo.7356538

Caution save your work before you try the fork

bomb.

DEMONS Demo Video
via Chomium Bug 1083278b

Contact
Matthias Gierlings
(matthias.gierlings@rub.de)

aZenodo: https://doi.org/10.5281/zenodo.7356538, GitLab Mirror:
https://git.noc.ruhr-uni-bochum.de/gierlmds/isolated-and-exhausted

bhttps://bugs.chromium.org/p/chromium/issues/detail?id=1083278

Questions?

33

https://bugs.chromium.org/p/chromium/issues/detail?id=1083278
https://doi.org/10.5281/zenodo.7356538
https://git.noc.ruhr-uni-bochum.de/gierlmds/isolated-and-exhausted
https://bugs.chromium.org/p/chromium/issues/detail?id=1083278

References i

[1] C. Reis, A. Moshchuk, and N. Oskov, “Site Isolation: Process Separation for Web Sites within the Browser,” in
28th USENIX security symposium (USENIX security 19), 2019, pp. 1661–1678 [Online]. Available:
https://www.usenix.org/conference/usenixsecurity19/presentation/reis

[2] The Chromium Authors, 2023. [Online]. Available: https://github.com/chromium/chromium/blob/fd8a8914
ca0183f0add65ae55f04e287543c7d4a/services/network/p2p/socket_manager.cc#L45%0A

[3] V. Le Pochat, T. Van Goethem, S. Tajalizadehkhoob, M. Korczyński, and W. Joosen, “Tranco: A
research-oriented top sites ranking hardened against manipulation,” in Proceedings of the 26th annual network
and distributed system security symposium, 2019, doi: 10.14722/ndss.2019.23386.

34

https://www.usenix.org/conference/usenixsecurity19/presentation/reis
https://github.com/chromium/chromium/blob/fd8a8914ca0183f0add65ae55f04e287543c7d4a/services/network/p2p/socket_manager.cc#L45%0A
https://github.com/chromium/chromium/blob/fd8a8914ca0183f0add65ae55f04e287543c7d4a/services/network/p2p/socket_manager.cc#L45%0A
https://doi.org/10.14722/ndss.2019.23386

	Site Isolation provides attackers with the power of process creation.
	Why does the browser fail to detect and prevent the Site Isolation fork bomb?
	Site Isolation provides access to secondary resources
	DEMONS in a nutshell

