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Isolated and Exhausted - Exploiting a browser security feature for attacks

How to use Site Isolation[1] to:
• DoS your browser
• DoS your OS
• Poison OS-DNS caches in the web-attacker model
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Process-Per-Tab vs. Site Isolation

Process-Per-Tab Model

• Processes shared cross site.

Site Isolation

• One process per site.
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Process-Per-Tab vs. Site Isolation

Process-Per-Tab Model

• Processes shared cross site
• Process creation requires user

interaction

Site Isolation

• One process per site
• Process creation automatic
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Site Isolation provides attackers with
the power of process creation.



Site Isolation automatically creates processes
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Site Isolation automatically creates processes
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Site Isolation enables a fork bomb in the web-attacker model
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Resource consumption of websites is monitored and limited by browsers

8



Why does the browser fail to detect
and prevent the Site Isolation fork
bomb?



Preventing the Site Isolation fork bomb is hard

Attribution problem
• No information who operates a site
• Every site must be isolated.
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Preventing the Site Isolation fork bomb is hard

Attribution problem
• No information who operates a site
• Every site must be isolated.

Monitoring problem
• Sandboxed web content barely

consumes any resources
• Exhaustion caused by browser (Site

Isolation overhead)

10



Site Isolation provides access to
secondary resources



Site Isolation provides access to secondary resources

Excerpt from the Chromium source code [2]
// Experimentation shows that creating too many sockets creates odd problems
// because of resource exhaustion in the Unix sockets domain.
// Trouble has been seen on Linux at 3479 sockets in test, so leave a margin.
const int kMaxSimultaneousSockets = 3000;
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Site Isolation provides access to secondary resources

Excerpt from the Chromium source code [2]
// Experimentation shows that creating too many sockets creates odd problems
// because of resource exhaustion in the Unix sockets domain.
// Trouble has been seen on Linux at 3479 sockets in test, so leave a margin.
const int kMaxSimultaneousSockets = 3000;

Potential problem: A global shared limit enables DoS via single site.

12



Site Isolation provides access to secondary resources

Excerpt from the Chromium source code [2]
// Experimentation shows that creating too many sockets creates odd problems
// because of resource exhaustion in the Unix sockets domain.
// Trouble has been seen on Linux at 3479 sockets in test, so leave a margin.
const int kMaxSimultaneousSockets = 3000;

Potential problem: A global shared limit enables DoS via single site.
Chromium limits sockets per-process.

Process-per-tab model
One window/tab can not DoS the browser
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Site Isolation provides access to secondary resources

Excerpt from the Chromium source code [2]
// Experimentation shows that creating too many sockets creates odd problems
// because of resource exhaustion in the Unix sockets domain.
// Trouble has been seen on Linux at 3479 sockets in test, so leave a margin.
const int kMaxSimultaneousSockets = 3000;

Potential problem: A global shared limit enables DoS via single site.
Chromium limits sockets per-process.

Process-per-tab model
One window/tab can not DoS the browser.

Site Isolation
One window/tab can DoS the entire OS.
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DNS Cache Poisoning in the web-attacker model

• DNS-Poisoning attack against a Windows 10 client . . .
• in ≈ 3.5 min median time . . .
• fastest attack iteration: 15 s

• Exhausting the UDP ephemeral port pool, bypassing resource limits via Site
Isolation

• The victim must use fixed DNS-Query port instead of a random one
• Misappropriating WebRTC to create many idle network sockets.
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DNS Cache Poisoning in the web-attacker model

DNS-Poisoning by
Exhaustive
Misappropriation
Of
Network
Sockets
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DNS Cache Poisoning in the web-attacker model

DNS-Poisoning by
Exhaustive
Misappropriation
Of
Network
Sockets
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DEMONS in a nutshell



DEMONS Setup Phase - Exhaustion of the ephemeral port pool

Victim DEMONS

Webserver
(attacker.com)

http://evil.org

pQRY

https://attacker.com
DEMONS

   WebRTC sockets
https

Free UDP 
ports
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DEMONS Setup Phase - Exhaustion of the ephemeral port pool

Victim DEMONS

Webserver
(attacker.com)

http://evil.org

pQRY

https://attacker.com
DEMONS

   WebRTC sockets

   const int kMaxSimultaneousSockets = 3000;

https

Free UDP 
ports
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DEMONS Setup Phase - Exhaustion of the ephemeral port pool

Free UDP 
ports
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DEMONS Setup Phase - Leaking the DNS query port
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DEMONS Poisoning Phase - Sending spoofed responses

Victim

OS DNS-Resolver
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DNSResponse1
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DNSResponsen

...

Webserver
(attacker.com)

http://evil.org

pQRY

https://attacker.com
DEMONS

Poisoner
DNSResponsei

(IPM, pQRY, idTX, bank.com)
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DEMONS Poisoning Phase - Triggering the DNS query
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DEMONS - State after a successful attack
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The current state of Site Isolation

DEMONS (CVE-2020-6557) is mitigated via global port limit.
Drawbacks:

• May not suffice if multiple browsers are in use
• Global limit can enable DoS against browser

Site Isolation fork bomb is currently not mitigated.
Countermeasure1/PoC2 proposed.

1https://bugzilla.mozilla.org/show_bug.cgi?id=1722160, https://bugs.chromium.org/p/chromium/issues/detail?id=1094876
2Chromium only, submitted via bug tracker in August 2022
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Fixing the Site Isolation fork bomb
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Fixing the Site Isolation fork bomb
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Fixing the Site Isolation fork bomb
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Fixing the Site Isolation fork bomb
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Fixing the Site Isolation fork bomb
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Fixing the Site Isolation fork bomb
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Fixing the Site Isolation fork bomb

PoC Mitigation with L = ∆L = 30
• Prevents fork bomb
• Prevents DoS on browser
• Unlikely to affect user experience

(tested against Tranco[3] Top 1000)
• Can utilize existing notification

mechanisms
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Resources & Contact

Artifacts availablea

DOIDOI 10.5281/zenodo.735653810.5281/zenodo.7356538

Caution save your work before you try the fork

bomb.

DEMONS Demo Video
via Chomium Bug 1083278b

Contact
Matthias Gierlings
(matthias.gierlings@rub.de)

aZenodo: https://doi.org/10.5281/zenodo.7356538, GitLab Mirror:
https://git.noc.ruhr-uni-bochum.de/gierlmds/isolated-and-exhausted

bhttps://bugs.chromium.org/p/chromium/issues/detail?id=1083278

Questions?
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