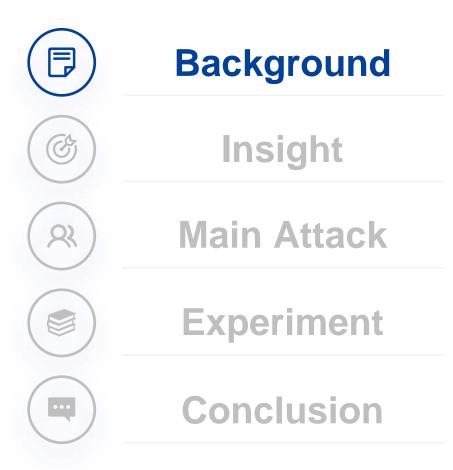
PCAT: Functionality and Data Stealing from Split Learning by Pseudo-Client Attack

USENIX Security 23

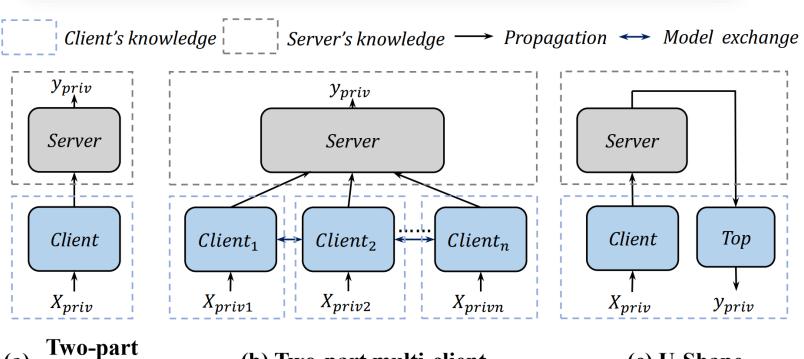
Xinben Gao Lan Zhang*



Background: Split learning (SL)

A paradigm of distributed ML.

Design for protecting the client's privacy.



Is there any risk of leaking private information?

(a) Two-part single-client

(b) Two-part multi-client

(c) U-Shape

Background: Previous Work

	FSHA[1]	UnSplit[2]	PCAT(Ours)
Attack	Malicious	Semi-honest	Semi-honest
Functionality Stealing	×	√	√
Input reconstruction	√	√	√
Label inference	×	√	√
Suit complex case	√	×	√

^[1] Dario Pasquini, Giuseppe Ateniese, and Massimo Bernaschi. Unleashing the tiger: Inference attacks on split learning. (CCS2021)

^[2] Ege Erdogan, Alptekin Küpçü, and A. Ercüment Çiçek. Unsplit: Data-oblivious model inversion, model stealing, and label inference attacks against split learning. (WPES@CCS 2022)

Attack Goals

More general and challenging scenario:

Transparent to the client

Minimal knowledge about the client model

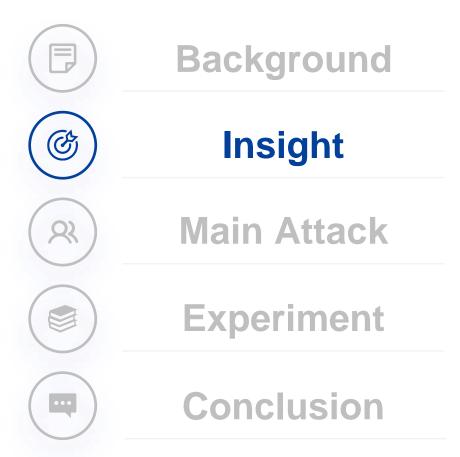
Support more complex client models and tasks

Effective against three variants of SL

Resilient to some defensive methods

Assumption

The server has a tiny dataset for the same learning task



Insight

Model trained on a small dataset (attack model)

Steal Functionality Model trained on a large dataset (victim model)

scenarios

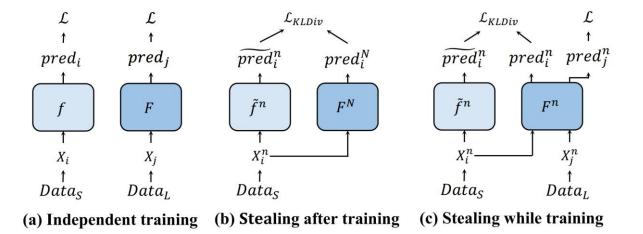
- Stealing a complete model
- 2. Stealing a client model

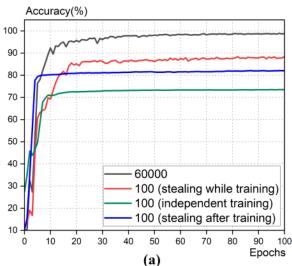
strategies

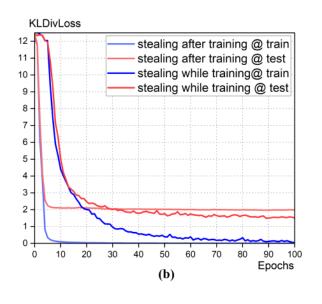
- 1. Stealing after training
- 2. Stealing while training

Insight: Steal a complete model

The evolving learning targets can "guide" the attack model to converge more precisely to the victim model.



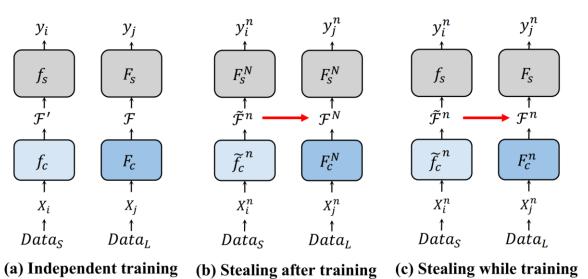


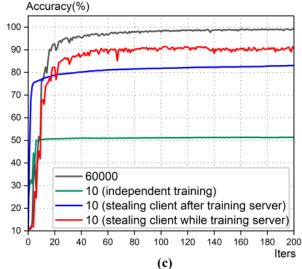


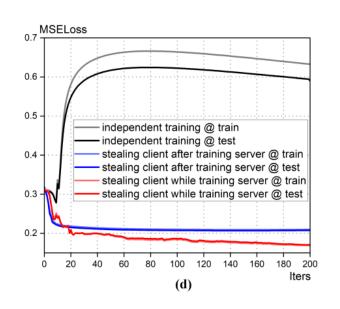
Insight: Steal a client model

Challenge:

- 1. The attack client can't obtain the victim client, it only obtain the server model.
- 2. The attack client can't feed data to the victim client and get soft labels generated by the victim client.

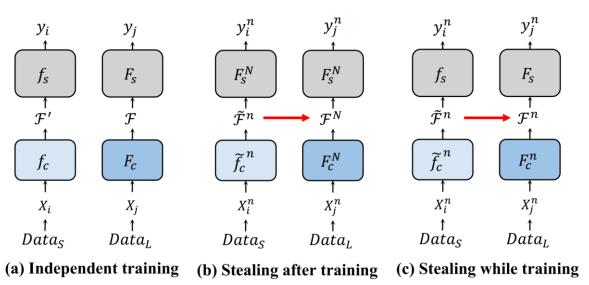


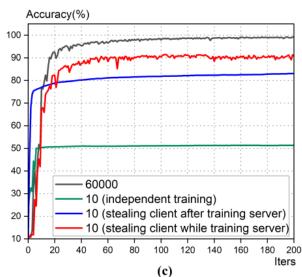


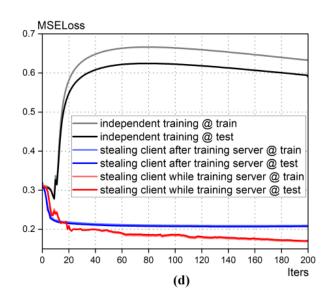


Insight: Steal a client model

The attack client optimizes the feature space of its output to get closed to the feature space of the victim client's output.

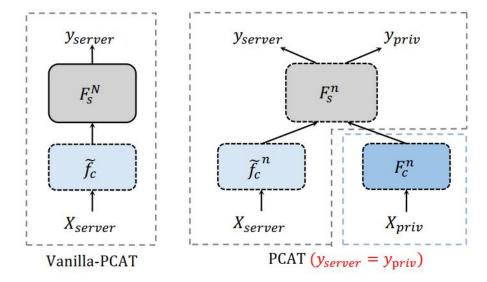


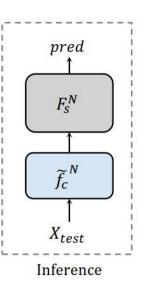


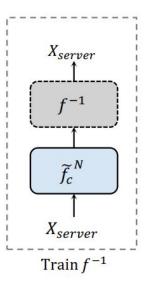


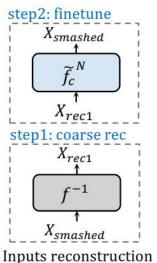
Pseudo-client Attack (PCAT)

- **Steal functionality**
- **Perform inference alone**
- **Train reverse mapping**
- **Reconstruct private inputs**



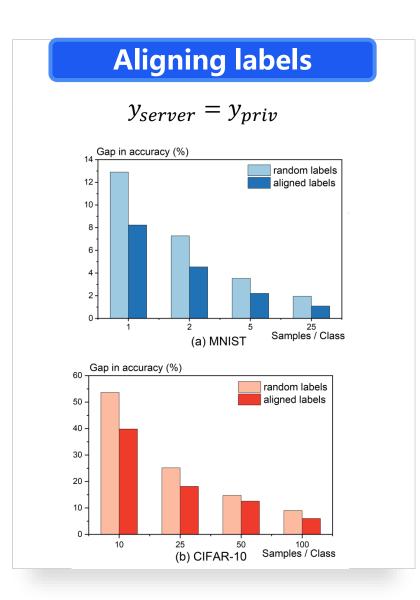


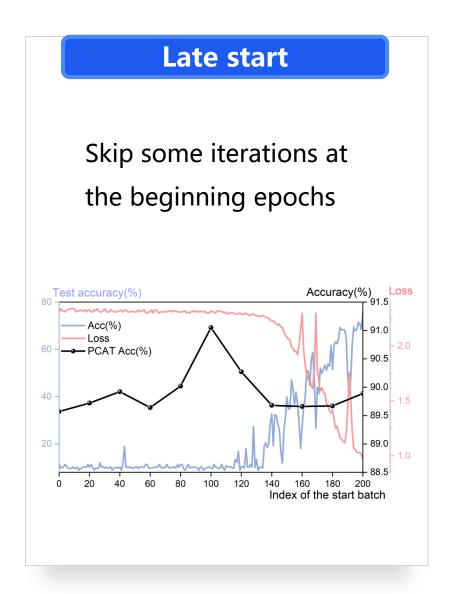


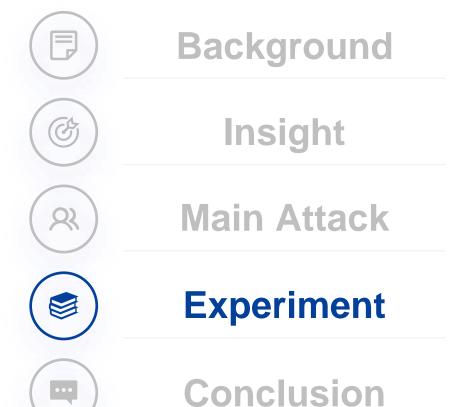




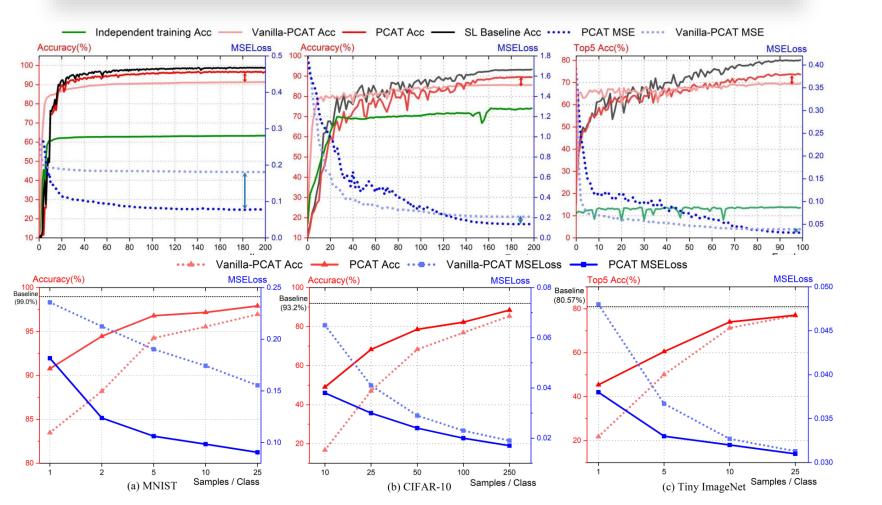
Details of PCAT





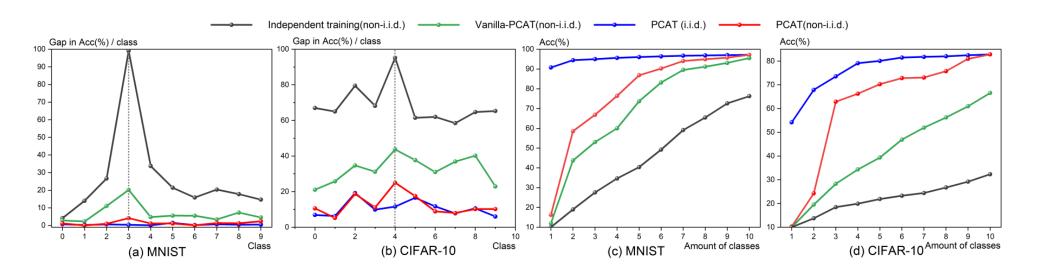


Functionality stealing result on MNIST, CIFAR-10 and Tiny-Imagenet



Functionality stealing result on non-i.i.d. dataset.

PCAT is robust to non-i.i.d. cases.



PCAT performs well though the server model and the victim model is different.

]	Victim		
	Simple	Same	Complex	client
Model	MaxPool ReLU Conv2d	MaxPool ReLU Conv2d MaxPool ReLU Conv2d	MaxPool ReLU Conv2d ReLU Conv2d MaxPool ReLU Conv2d	MaxPool ReLU Conv2d MaxPool ReLU Conv2d †
Acc(%)	73.60	97.17	97.13	99.06
MSE	0.387	0.133	0.141	0

		Victim			
	Simple	Same	Complex	Other	client
Model	MaxPool Conv2d MaxPool Conv2d f	MaxPool Conv2d Conv2d MaxPool Conv2d Conv2d Conv2d	MaxPool Conv2d Conv2d Conv2d MaxPool Conv2d Conv2d Conv2d Conv2d Conv2d	ResBlock t ResBlock	MaxPool Conv2d Conv2d MaxPool Conv2d Conv2d Conv2d
Acc(%)	87.54	88.90	88.35	84.96	93.20
MSE	0.0279	0.0134	0.0166	0.0511	0

Our attack is resilient to privacy defenses the victim clients may adopts.

NoPeek defense

DP-noise on the client model

MNIST					MNI	ST				
α	0	0.2	0.4	0.6	0.8	σ	+∞	70	60	50
Baseline Acc(%)	99.00	98.52	98.10	96.98	94.33	Baseline Acc(%)	99.00	94.10	90.79	84.71
PCAT Acc(%)	98.01	97.27	96.89	93.41	92.55	PCAT Acc(%)	97.31	91.12	88.66	80.84
Acc(%) Gap	0.99	1.25	1.21	3.57	1.78	Acc(%) Gap	1.69	2.98	2.13	3.87
	Cl	FAR-10					CIFAI	R-10		
α	C I	IFAR-10 0.1	0.2	0.4	0.6	σ	CIFAI +∞	R-10 200	100	50
α Baseline Acc(%)				0.4 68.04	0.6 62.61	σ Baseline Acc(%)			100 80.17	50 73.17
	0	0.1	0.2				+∞	200		

Appropriate Gaussian noise to the smashed data can improve attack performance

DP-noise on smashed data

		0.4	0.0	0 =
σ	0	0.1	0.3	0.5
Baseline Acc(%)	80.28	79.80	79.90	80.07
PCAT Acc(%)	74.52	77.79	79.00	79.45
MSE	0.0362	0.0864	0.2108	0.3690
		g S		
Sec. Sinta			100	

Our attack outperforms SOTA method in every attack goals.

Functionality stealing

Datasets	MNIS	T	CIFAR-	-10
Methods	UnSplit [9]	PCAT	UnSplit [9]	PCAT
SL Baseline	98.00	99.00	71.00	93.20
split layer = 1	93.75	98.75	43.69	91.10
split layer $= 2$	63.3	96.79	22.12	78.57

Label inference

Datasets	MNI	ST	CIFA	R-10
Methods	UnSplit	PCAT	UnSplit	PCAT
top layer = 1	100.0	98.82	100.0	93.42
top layer = 2	9.1	96.58	8.1	92.57

Data reconstruction

	UnSplit	PCAT
truth		
layer1		
layer2		
layer3		

Conclusion

Conclusion

A novel attack

Applicable on various split learning settings

Achieve several attack goals

Unknown victim client model

Works effectively for rich models, tasks and settings

Transparent to the client

Thank you!

Please feel free to contact with us:

Xinben Gao: gxb1320276347@mail.ustc.edu.cn

Lan Zhang: <u>zhanglan@ustc.edu.cn</u>