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How do we build an audit system with these guarantees?
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• Kernel exploits leverage a diverse set 
of system calls

• Logging all system calls guarantees 
event coverage 

• Even for asynchronous logging, 
the slowdown is prohibitive

Logging all system calls ensures detailed event tracing
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Challenge 1: High I/O latency for synchronous logging

Challenge 2: Inefficient logging pipeline


• Isolating logs in memory within a protected environment and eventually 

persist

• Optimizing the end-to-end pipeline from log generation to persistence 

OMNILog addresses these efficiency challenges
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• Current audit systems architectures:


• Can’t prevent tampering of all logs under kernel exploits


• Can’t keep a detailed trace of security-related events 


• OmniLog redesigns audit architecture to: 


• Prevent all log tampering for all events 


• Keep a full trace of all syscalls executed during kernel exploits


• OMNILog’s overhead compared to native execution is ~3.5% (geomean)

Conclusion

Thanks!
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