
Rethinking System Audit Architectures for
High Event Coverage and Synchronous Log Availability

Varun Gandhi, Sarbartha Banerjee, Aniket Agarwal,

Adil Ahmed, Sangho Lee, and Marcus Peinado

System auditing is critical for forensic analysis

Enterprise
Machine

Audit System

System auditing is critical for forensic analysis

Enterprise
Machine

Audit System

System auditing is critical for forensic analysis

Trace of security-related events
E.g., system calls

Enterprise
Machine

Audit System

System auditing is critical for forensic analysis

Forensic Analyst

(Monet Version)

Trace of security-related events
E.g., system calls

Enterprise
Machine

Audit System

What makes a log effective for forensic analysis?

Trace of security-related events
E.g., system calls

Enterprise
Machine

Audit System

Forensic Analyst

(Monet Version)

What makes a log effective for forensic analysis?

Should not

be tampered

Trace of security-related events
E.g., system calls

Enterprise
Machine

Audit System

Forensic Analyst

(Monet Version)

What makes a log effective for forensic analysis?

Keep detailed

event trace

Should not

be tampered

Trace of security-related events
E.g., system calls

Enterprise
Machine

Audit System

Forensic Analyst

(Monet Version)

What makes a log effective for forensic analysis?

Yay!
I can analyze

the attack

Keep detailed

event trace

Should not

be tampered

Trace of security-related events
E.g., system calls

Enterprise
Machine

Audit System

Forensic Analyst

(Monet Version)

What makes a log effective for forensic analysis?

Yay!
I can analyze

the attack

Keep detailed

event trace

Should not

be tampered

Trace of security-related events
E.g., system calls

Enterprise
Machine

Audit System

Present day audit systems
do not achieve this

Forensic Analyst

(Monet Version)

Kernel exploits can tamper audit logs

Audit System

Enterprise
Machine

OS

Kernel exploits can tamper audit logs

Audit System

Enterprise
Machine

OS

Log Generation

Kernel Memory

Protected

Storage

Audit System

Enterprise
Machine

OS

Current systems don’t protect all logs up to the compromise

Log Generation

Kernel Memory

Protected

Storage

Audit System

Enterprise
Machine

OS

High I/O Latency!

Current systems don’t protect all logs up to the compromise

Log Generation

Kernel Memory

Protected

Storage

Audit System

Enterprise
Machine

OS

High I/O Latency!

Current systems don’t protect all logs up to the compromise

Log Generation

Kernel Memory

Protected

Storage

Audit System

Enterprise
Machine

OS

High I/O Latency!

Current systems don’t protect all logs up to the compromise

Log Generation

Kernel Memory

Protected

Storage

Audit System

Enterprise
Machine

OS

High I/O Latency!

Current systems don’t protect all logs up to the compromise

Audit systems also don’t keep a detailed trace of events

• Rulesets determine what system call events get logged

Audit systems also don’t keep a detailed trace of events

• Rulesets determine what system call events get logged

• A set of rulesets exist as standards across government, industry, and
academia

Audit systems also don’t keep a detailed trace of events

• Rulesets determine what system call events get logged

• A set of rulesets exist as standards across government, industry, and
academia

• Analyzed 164 PoC kernel exploits on a subset of standard rule sets

Audit systems also don’t keep a detailed trace of events

• Rulesets determine what system call events get logged

• A set of rulesets exist as standards across government, industry, and
academia

• Analyzed 164 PoC kernel exploits on a subset of standard rule sets

MITRE NISPOM STIG MSD Academic

Average 14.7% 12.4% 9.8% 10.2% 15.4%

0%
Coverage 60/164 77/164 77/164 80/164 11/164

Audit systems also don’t keep a detailed trace of events

• Rulesets determine what system call events get logged

• A set of rulesets exist as standards across government, industry, and
academia

• Analyzed 164 PoC kernel exploits on a subset of standard rule sets

MITRE NISPOM STIG MSD Academic

Average 14.7% 12.4% 9.8% 10.2% 15.4%

0%
Coverage 60/164 77/164 77/164 80/164 11/164

Audit systems also don’t keep a detailed trace of events

• Rulesets determine what system call events get logged

• A set of rulesets exist as standards across government, industry, and
academia

• Analyzed 164 PoC kernel exploits on a subset of standard rule sets

MITRE NISPOM STIG MSD Academic

Average 14.7% 12.4% 9.8% 10.2% 15.4%

0%
Coverage 60/164 77/164 77/164 80/164 11/164

Audit systems also don’t keep a detailed trace of events

Keep detailed

event trace

Should not

be tampered

Enterprise
Machine

Audit System

Forensic Analyst

(Monet Version)

How do we build an audit system with these guarantees?

Enterprise Machine

Log Generation

User Process

Audit System

Operating System

Protected

Storage

Synchronous logging prevents tampering

Enterprise Machine

Log Generation

User Process

Audit System

Operating System

1. Syscall
Invoked

Protected

Storage

Synchronous logging prevents tampering

Enterprise Machine

Log Generation

User Process

Audit System

2. Protect
Log Record

Operating System

1. Syscall
Invoked

Protected

Storage

Synchronous logging prevents tampering

Enterprise Machine

Log Generation

User Process

Audit System

2. Protect
Log Record

Operating System

1. Syscall
Invoked

3. Syscall
Executed

Protected

Storage

Synchronous logging prevents tampering

Enterprise Machine

Log Generation

User Process

Audit System

2. Protect
Log Record

Operating System

1. Syscall
Invoked

3. Syscall
Executed

Protected

Storage

Synchronous logging prevents tampering

Too Slow!

Logging all system calls ensures detailed event tracing

• Kernel exploits leverage a diverse set
of system calls

Logging all system calls ensures detailed event tracing

• Kernel exploits leverage a diverse set
of system calls

• Logging all system calls guarantees
event coverage

Logging all system calls ensures detailed event tracing

• We measured Auditd overhead when
logging all system calls on real-world
workloads

Pe
rf

O
ve

rh
ea

d
in

 %
0

25
50
75

100
125
150
175
200
225
250
275
300

NGINX Memcached Redis Chromium

Auditd

Auditd RuleSet = All Syscalls

• Kernel exploits leverage a diverse set
of system calls

• Logging all system calls guarantees
event coverage

Logging all system calls ensures detailed event tracing

• We measured Auditd overhead when
logging all system calls on real-world
workloads

Pe
rf

O
ve

rh
ea

d
in

 %
0

25
50
75

100
125
150
175
200
225
250
275
300

NGINX Memcached Redis Chromium

Auditd

Auditd RuleSet = All Syscalls

• Kernel exploits leverage a diverse set
of system calls

• Logging all system calls guarantees
event coverage

• Even for asynchronous logging,
the slowdown is prohibitive

Logging all system calls ensures detailed event tracing

Challenge 1: High I/O latency for synchronous logging

Challenge 2: Inefficient logging pipeline

OMNILog addresses these efficiency challenges

Challenge 1: High I/O latency for synchronous logging

Challenge 2: Inefficient logging pipeline

• Isolating logs in memory within a protected environment and eventually

persist

OMNILog addresses these efficiency challenges

Challenge 1: High I/O latency for synchronous logging

Challenge 2: Inefficient logging pipeline

• Isolating logs in memory within a protected environment and eventually

persist

• Optimizing the end-to-end pipeline from log generation to persistence

OMNILog addresses these efficiency challenges

Enterprise Machine

Log Generation

Protected Buffer

User Process

Audit System

Protected Disk

TrustZone/
VMX

Untrusted
OS

Hardware

How does OMNILog build a protected environment?

Enterprise Machine

Log Generation

Protected Buffer

User Process

Audit System

Protected Disk

TrustZone/
VMX

Untrusted
OS

Hardware

How does OMNILog build a protected environment?

Enterprise Machine

Log Generation

Protected Buffer

User Process

Audit System

Protected Disk

TrustZone/
VMX

Untrusted
OS

Hardware

How does OMNILog build a protected environment?

Enterprise Machine

Log Generation

Protected Buffer

User Process

Audit System

Protected Disk

TrustZone/
VMX

Untrusted
OS

Hardware

How does OMNILog build a protected environment?

Enterprise Machine

Log Generation

Protected Buffer

User Process

Audit System

Protected Disk

TrustZone/
VMX

Untrusted
OS

Hardware

1. Syscall
Invoked

How does OMNILog build a protected environment?

Enterprise Machine

Log Generation

Protected Buffer

User Process

Audit System

Protected Disk

TrustZone/
VMX

Untrusted
OS

Hardware

2. Sync Protect
Log Record

1. Syscall
Invoked

How does OMNILog build a protected environment?

Enterprise Machine

Log Generation

Protected Buffer

User Process

Audit System

Protected Disk

TrustZone/
VMX

Untrusted
OS

Hardware

2. Sync Protect
Log Record

1. Syscall
Invoked

3. Syscall
Executed

How does OMNILog build a protected environment?

Enterprise Machine

Log Generation

Protected Buffer

User Process

Audit System

Protected Disk

TrustZone/
VMX

Untrusted
OS

Hardware

2. Sync Protect
Log Record

4. Async
Persist Logs

1. Syscall
Invoked

3. Syscall
Executed

How does OMNILog build a protected environment?

Native
Auditd

OMNILog

How does OMNILog optimize the logging pipeline?

Log Generation

Human-Readable

~12k cycles | 1KB

Native
Auditd

OMNILog

How does OMNILog optimize the logging pipeline?

Log Generation

Human-Readable

~12k cycles | 1KB Global Buffer

Native
Auditd

OMNILog

How does OMNILog optimize the logging pipeline?

Log Generation

Human-Readable

~12k cycles | 1KB Global Buffer

Disk

wait when the
buffer is full

Native
Auditd

OMNILog

How does OMNILog optimize the logging pipeline?

Log Generation

Human-Readable

~12k cycles | 1KB Global Buffer

Disk

wait when the
buffer is full

Fast
Log Generation

 Raw and compressed
~3k cycles | 64B

Native
Auditd

OMNILog

How does OMNILog optimize the logging pipeline?

Log Generation

Human-Readable

~12k cycles | 1KB Global Buffer

Disk

wait when the
buffer is full

Isolated Per-core Memory Region

Fast
Log Generation

 Raw and compressed
~3k cycles | 64B

 Eliminate

inter-core contention

Native
Auditd

OMNILog

How does OMNILog optimize the logging pipeline?

Log Generation

Human-Readable

~12k cycles | 1KB Global Buffer

Disk

wait when the
buffer is full

Isolated Per-core Memory Region

Fast
Log Generation

Protected

Disk

 Raw and compressed
~3k cycles | 64B

 Eliminate

inter-core contention

Dual-buffers and 
background writes

Native
Auditd

OMNILog

How does OMNILog optimize the logging pipeline?

Pe
rfo

rm
an

ce

O
ve

rh
ea

d
(%

)

0

20

40

60

80

100

NGINX Memcached Redis SQLite Chromium OpenSSL 7zip GNU Octave

OMNILog-Arm

OMNILog-ARM: 3.2% (Geomean)
Pe

rfo
rm

an
ce

O

ve
rh

ea
d

(%
)

0

20

40

60

80

100

NGINX Memcached Redis SQLite Chromium OpenSSL 7zip GNU Octave

OMNILog-X86

OMNILog-x86: 3.6% (Geomean)

OMNILog incurs low overhead over native execution

• Current audit systems architectures:

• Can’t prevent tampering of all logs under kernel exploits

• Can’t keep a detailed trace of security-related events

• OmniLog redesigns audit architecture to:

• Prevent all log tampering for all events

• Keep a full trace of all syscalls executed during kernel exploits

• OMNILog’s overhead compared to native execution is ~3.5% (geomean)

Conclusion

Thanks!

vgandhi@g.harvard.edu

