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The Need of Data-Free Trojan Detectors

I will upload my 
models to earn 
money or help 

other DNN users!

Wow an off-the-
shelf model! Just 

what I need. 

Model Uploader Model-Sharing Platform Downstream User



The Need of Data-Free Trojan Detectors

There are many models uploaded without validation data on model-sharing platforms like Model Zoo.

If trojaned DNNs are 
downloaded by 

others, I can control 
their AI systems.

So many models are uploaded 
without validation data! How 
can I check whether they are 

trojaned or not? Wait…Is this 
model secure?？

No Validation Data

Model Uploader Model-Sharing Platform Downstream User



Challenges of Building Data-Free Trojan Detectors

• The attacker can design complex trojan attacks.

• Triggers can be variable.
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(1) Various Trigger Types
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Challenges of Building Data-Free Trojan Detectors

• The attacker can design complex trojan attacks.

• Triggers can be variable.

• The class-specific strategy makes more evasive trojan attacks.
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Challenges of Building Data-Free Trojan Detectors

• The attacker can design complex trojan attacks.

• Triggers can be variable.

• The class-specific strategy makes more evasive trojan attacks.

Poisoned
Dataset

Non-source class (“hamster”) 
sample with trigger

• The defender has no access to

any clean samples or samples

with the trigger.

(1) Various Trigger Types (2) Class-Specific Strategy
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Intuition

Part 1: Feature Extractor

Part 2: Classifier

Intuition 1: Considering the variety of trigger types, we should reverse-engineering intermediate

representations (IRs) rather than raw inputs.

IR
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Intuition

Part 1: Feature Extractor

Part 2: Classifier

Intuition 1: Considering the variety of trigger types, we should reverse-engineering intermediate

representations (IRs) rather than raw inputs.

IR
• No matter what trigger type the attacker chooses, the trigger

pattern will be extracted into several dimensions in the

intermediate representation.
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Intuition

Intuition 2: For either class-specific trojan attacks or class-agnostic trojan attacks, the underlying

working mechanism of trojaned model is to manipulate the priority of different features.
• A trojaned model extracts trigger features and normal features in the shallow layers, then gives the trigger

feature priority over source-class normal features in the last few layers.

Part 1: Feature Extractor

Non-source-class
benign features

Source-class
benign features

Trigger features

Target class: grey wolf
Source class: cat

Other class: hamster
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Intuition

Intuition 2: For either class-specific trojan attacks or class-agnostic trojan attacks, the underlying

working mechanism of trojaned model is to manipulate the priority of different features.
• A trojaned model extracts trigger features and normal features in the shallow layers, then gives the trigger

feature priority over source-class normal features in the last few layers.

• To achieve this, a trojaned model tends to suppress the influence of normal features of the source class(es)

while promote the importance of trigger features.

Part 1: Feature Extractor Part 2: Classifier

Non-source-class
benign features

Source-class
benign features

Trigger features

≥ >
Target class: grey wolf

Source class: cat
Other class: hamster

“hamster”

“grey wolf”
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Intuition

Intuition 3: A trojaned model tends to have low confidence when predicting the source-class

label while increase the posterior of the target class.
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Intuition

Intuition 3: A trojaned model tends to have low confidence when predicting the source-class label

while increase the posterior of the target class. Such a tendency can be steadily observed on

reverse-engineered IRs.
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• Such a tendency is difficult to observe on real benign samples

but can be steadily observed on reverse-engineered IRs.

➢ Reason 1: real benign samples have different feature qualities.
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Intuition

Intuition 3: A trojaned model tends to have low confidence when predicting the source-class label while

increase the posterior of the target class. Such a tendency can be steadily observed on reverse-

engineered IRs.
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0.01

• As source-class benign features are suppressed, source-

class benign samples have higher possibility to be

misclassified into the target class.
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• Such a tendency is difficult to observe on real benign samples but

can be steadily observed on reverse-engineered IRs.

➢ Reason 1: real benign samples have different feature qualities.

➢ Reason 2: reverse-engineered IRs of the source classes have stable 
feature qualities as they are optimized till convergence.
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Method of FreeEagle

Classifier PartFeature Extractor Part

① Inspected Layer Selection

Inspected Layer

Step 1: Choose one middle layer of the inspected model as the inspected layer, 
e.g., the middle layer of the model. 
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Method of FreeEagle

Classifier PartFeature Extractor Part

① Inspected Layer Selection ② Dummy IR Generation

Dummy IRk
Maximize

Posterior k

0

1

...

k

…

nInspected Layer

Step 2: Reverse-engineer the dummy intermediate representation of each class 
in a gradient-descent manner, with the optimization policy as maximizing the 
posterior of the class.

• Dummy IRk is tunable.
• The parameters of the model’s  classifier part are frozen.
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Method of FreeEagle

Classifier PartFeature Extractor Part

① Inspected Layer Selection

③ Dummy IR Forward Propagation

② Dummy IR Generation

Dummy IRk

Dummy IRk

Maximize

Posterior k

0

1

...

k

…

n

Posterior

Vector

Vk

0

1

...

k

…

n

Inspected Layer



21

Method of FreeEagle

Classifier PartFeature Extractor Part

① Inspected Layer Selection
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Method of FreeEagle

Classifier PartFeature Extractor Part

① Inspected Layer Selection

③ Dummy IR Forward Propagation ④ Posterior Outliers Detection

② Dummy IR Generation
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Method of FreeEagle

Classifier PartFeature Extractor Part

① Inspected Layer Selection

③ Dummy IR Forward Propagation ④ Posterior Outliers Detection

② Dummy IR Generation

Dummy IRk
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➢ This model is trojaned with a class-specific backdoor, whose source class is 9 and the target class is 14.

(9,14)
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Method

Classifier PartFeature Extractor Part

① Inspected Layer Selection

③ Dummy IR Forward Propagation ④ Posterior Outliers Detection

② Dummy IR Generation

Dummy IRk
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Maximize
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Vk[k]

to zero

0

1

...

k

…

n

0   1  ...   K  …  n

Inspected Layer

➢ This model is trojaned with a class-specific backdoor, whose source class is 9 and the target class is 14.

➢ This model is trojaned with 
a class-agnostic backdoor, 
whose target class is 8.

(9,14)

Col: 8



Defense Evaluation
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Experiment Setup

➢ 4 Datasets & 4 Model Architectures
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Experiment Setup – Training Benign & Trojaned Models

➢ We train hundreds of benign
and trojaned models on each
dataset, with various trigger
types and attack strategies
taken into consideration.
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Experiment Setup – Training Benign & Trojaned Models

➢ We train hundreds of benign
and trojaned models on each
dataset, with various trigger
types and attack strategies
taken into consideration.

➢ Both the trojaned models and
the benign models achieve
good performance on their
original tasks.
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Experiment Setup – Training Benign & Trojaned Models

➢ We train hundreds of benign and
trojaned models on each dataset,
with various trigger types and attack
strategies taken into consideration.

➢ Both the trojaned models and the
benign models achieve good
performance on their original tasks.

➢ The attack success rates (ASRs) on
trojaned models are high, i.e., the
neural trojans are successfully
planted into the models.



30

Defense Performance

Data-free 
trojan detector

➢ FreeEagle achieves good performance when detecting neural trojans with patch/blending/filter trigger, 
outperforming the data-free trojan detector DF-TND in all experiment settings. 
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Defense Performance

Data-free 
trojan detector

Non-data-free
trojan detector

➢ FreeEagle even outperforms some SOTA non-data-free trojan detectors, especially for class-specific 
neural trojans.
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Defending Against Natural/Composite Trigger

➢ When detecting neural trojans with natural/composite trigger, FreeEagle’s performance is better than or comparable with SOTA 
non-data-free trojan detectors.

• natural trigger:
Whether the image shows a sheep
in the grass.

• composite trigger:
Whether the image contains mixed
benign features of class “car” and
class “frog”.



Defending Against Adaptive Attacks
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Adaptive Attack – Posterior Shaping
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Adaptive Attack – Posterior Shaping

poisoned
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➢ Though posterior shaping does make the trojaned model more
evasive against FreeEagle, it can not bypass FreeEagle, e.g., on the
CIFAR10 dataset, the TPR/FPR of FreeEagle only degrades from
0.88/0.05 to 0.82/0.04.



36

There is more…

For more results and analysis, e.g., defense 
performance against adaptive attacks, future 
work…. Please see our paper!



Conclusion
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Conclusion

Attack
Defense

Trigger Type Trojan Attack Strategy

Pixel-Space Triggers Feature-Space Triggers
Class-

Agnostic
Class-

Specific
Name Is Data-Free

Patch 
Trigger

Blending 
Trigger

Filter 
trigger

Composite 
Trigger

Natural 
trigger

FreeEagle √ √ √ √ √ √ √ √

DF-TND √ √ √ × × × √ ×

STRIP × √ √ × × × √ ×

ANP × √ √ √ √ × √ √

NC × √ √ × × × √ ×

ABS × √ √ √ × √ √ √



THANK YOU !
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