
Actor: Action-Guided
Kernel Fuzzing

Marius Fleischer1*, Dipanjan Das1*, Priyanka Bose1, Weiheng Bai2,
Kangjie Lu2, Mathias Payer1,3, Christopher Kruegel1, Giovanni Vigna1

1University of California, Santa Barbara 2University of Minnesota 3EPFL

*equal contribution

Kernel Security Analysis

● OS kernel is management layer between hardware and applications

● Google continuously fuzzes several *nix kernels using syzbot

● Some bugs persist for up to ~15 years

● Two privilege escalation bugs in the Ubuntu Linux kernel

2
Source: https://blog.grimm-co.com/2021/03/new-old-bugs-in-linux-kernel.html

https://www.bleepingcomputer.com/news/security/almost-40-percent-of-ubuntu-users-vulnerable-to-new-privilege-elevation-flaws/

Coverage-Guided Kernel Fuzzing

3

Beyond Code Coverage

● Most state-of-the-art fuzzers are coverage-maximizing

● Coverage is necessary, but not sufficient for finding bugs:

○ Memory-related bugs, e.g., Use-After-Free, Double-Free, Uninitialized Read

○ Spatial constraint: operations need to affect same memory

○ Temporal constraint: operations need to be performed in the right order

4

Example: Use-After-Free Linux Bug

1. fd = openat(0, “/dev/infiniband/rdma_cm”, …)
2. write(fd, &{RDMA_USER_CM_CMD_CREATE_ID}, …)
3. write(fd, &{RDMA_USER_CM_CMD_DESTROY_ID}, …)
4. write(fd, &{RDMA_USER_CM_CMD_LISTEN}, …)

4. __rdma_create_id(…) {
5. struct rdma_id_private *id_priv
6. …
7. id_priv = kzalloc(sizeof
 *id_priv, …)
8. …
9. }

10. rdma_destroy_id(…) {
11. …
12. kfree(id_priv)
13. …
14. }

15. cma_listen_on_all(…) {
16. …
17. list_add_tail(&id_priv->list,

 &listen_any_list)
18. …
19. }

1

23

Allocates id_priv

Frees up id_priv
Uses id_priv

5

Beyond Code Coverage

6

Darts: connecting system calls to actions and contexts

➔ Dart captures which system call triggers what action with its context

s
1
(arg

11
, arg

12
, ...)

s
2
(arg

21
, arg

22
, ...)

s
3
(arg

31
, arg

32
, ...)

.

.

program

a
1
:p = kmalloc(...)

a
2
:*p = 0x1337

a
3
:kfree(p)

actions

f0
f1
f2
f3

∆1:stack
trace

7

Actions

● Action is defined by its type, address and size

● Current prototype supports only heap-related action types

○ Allocation

○ Value read

○ Pointer read

○ Index read

○ Deallocation

○ Value write

○ Pointer write

○ Index write

8

Action-Guided Fuzzing

● We propose action-guided fuzzing, a novel technique to synthesize
potentially bug-inducing programs guided by actions

○ Action-mining: Collect darts (actions triggered by system calls)

○ Program synthesis: Generate bug-inducing system call sequences based
on predefined templates

9

● Use-After-Free ● Double-Free

● Uninitialized Read ● Out-of-Bounds

● Invalid Free

● Null-Pointer Dereference

● Memory Leak

Action Mining

● Infer relationships between system calls and the actions they trigger

● Find system calls that access shared memory

➜ Spatial constraint

● Result: Groups of darts operating on shared memory

10

obj 1

Action Mining – Grouping
Combine related darts from the one program together

obj 2

11

memory

a
l
l
o
c

r
e
a
d

w
r
i
t
e

a
l
l
o
c

w
r
i
t
e

obj 1

Action Mining – Grouping
Combine related darts from the one program together

obj 2

group2

group1

12

memory

a
l
l
o
c

r
e
a
d

w
r
i
t
e

a
l
l
o
c

w
r
i
t
e

Action Mining – Merging

Learn relation between groups generated from different programs

group1 group1

13

Program A Program B

alloc

read

dealloc

alloc

read

Action Mining – Merging

Learn relation between groups generated from different programs

group1 group1

alloc

read

dealloc

alloc

read

14

Program A Program B

Same stack trace

Action Mining – Merging

Learn relation between groups generated from different programs

group1 group1

15

Program A Program B

group

alloc

read

dealloc

alloc

read

alloc

read

alloc

read

dealloc

Program Synthesis

16

group

alloc
s1

read
s4

dealloc
s2

alloc
s3

read
s3

UAF template

s
1
(arg

11
, arg

12
, ...)

s
2
(arg

21
, arg

22
, ...)

s
3
(arg

31
, arg

32
, ...)

.

.

alloc -> dealloc -> read | write

Evaluation

● RQ1: Quality of darts?

● RQ2: Bug-inducing programs – action-guided vs coverage-guided

● RQ3: New bugs?

● Target Kernel

○ RQ1 & RQ2: v5.17 (kernel used during development)

○ RQ3: v5.4.206 (LTS), v5.10.131 (LTS), v5.19 (stable), v6.2-rc5 (latest)

17

RQ1: Quality of Darts

● Darts are executed on a different kernel state

○ May not reproduce the intended action

18

Action Success (%) Action Success (%)

Alloc 68.07 Val Write 32.91

Val Read 38.91 Ptr Write 56.27

Ptr Read 38.18 Idx Write 18.49

Idx Read 29.37 Dealloc 42.92

Overall 54.68

RQ2: Program Diversity

● Does Actor generate more bug-inducing programs than syzkaller?

Bug Class
Templates

Improvement Bug Class
Templates

Improvement

Use-After-Free 22.46x Null Pointer Deref 11.44x

Double Free 28.53x Invalid Free 1.16x

Out of Bounds 1 20.93x Memory Leak 1 1.20x

Out of Bounds 2 37.84x Memory Leak 2 21.70x

Uninitialized Read 3.01x

19

RQ3: New bugs

41 new bugs in four versions of the Linux kernel

20

Conclusion

● Action-guided fuzzing is a novel input generation strategy for kernel fuzzing

● Action-guidance complements, but does not competes with coverage

● Actor, our prototype implementation of action-guided kernel fuzzing

● Discovered 41 previously unknown vulnerabilities in well-tested and

actively-patched LTS and stable Linux kernel versions

21
https://github.com/ucsb-seclab/actormariusfleischer@ucsb.edu

