TVA: A multi-party computation system for secure and expressive time series analytics

<u>Muhammad Faisal</u> PhD Student Boston University mfaisal@bu.edu

John Liagouris Assistant Professor Boston University liagos@bu.edu

Vasiliki Kalavri Assistant Professor Boston University vkalavri@bu.edu

Jerry Zhang MS Student UCSD jerryzhang@ucsd.edu

Mayank Varia Associate Professor Boston University varia@bu.edu

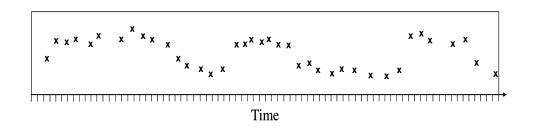
https://sites.bu.edu/casp/

Secure Time Series Analytics

Query: Effect of insulin during *eating periods*.

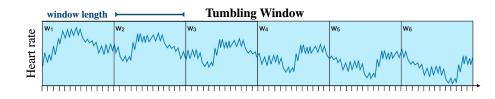
Query: Resource utilization per *job stages*.

Query:


Energy demand peak and supply peak *per hour*.

Mobile health analytics

Protect: Individuals health records.


Resource Optimization **Protect:** Sensitive telemetry data.

Energy Consumption Monitoring **Protect:** Smart Grid Individual's privacy.

Windows: monitoring the evolution of metrics over time

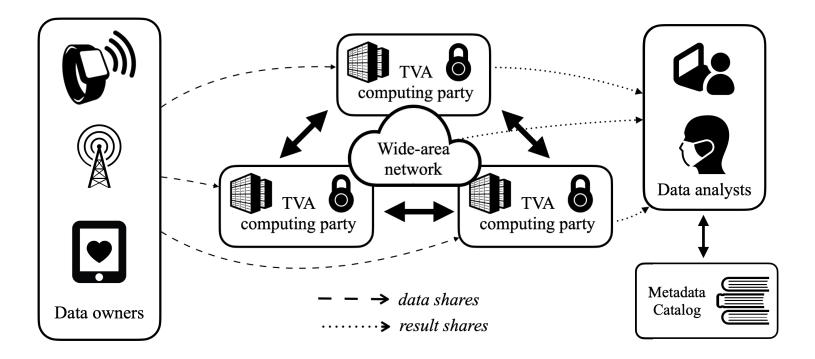
• **Tumbling Window:** groups records into fixed-length time buckets.

Session Windows

• Gap Session Window:

groups records with timestamps difference less than the 'gap' into the same session.

Threshold Session Window: groups consecutive records whose attribute values are above the `*threshold*` into the same session.



Requirements for secure and expressive time series analytics

	No Leakage	Time Snapshots	Windows	Query Composition	Unordered and irregular timestamps
Waldo (S&P 22)	1	\checkmark	×	(✓)	×
TimeCrypt (NSDI 20)	(✔)	\checkmark	(✔)	×	×
Zeph (OSDI 21)	(✔)	\checkmark	(✔)	×	×
TVA	1	1	1	1	1

اممر مامير مامير ما

System Overview

TVA contributions

Secure Window Assignment Protocols

Division for tumbling window assignment - Sessionization

Efficient Operator Composition

Arbitrary complex analytics

Semi-honest and Malicious Security

3PC replicated secret sharing scheme – 4PC Fantastic Four

System Design and Implementation

Efficient multi-threaded runtime, high-level dataflow API and vectorized execution.

Query:

"During each patient's eating period, count the number of insulin doses they have taken."

```
// Window aggregation
```

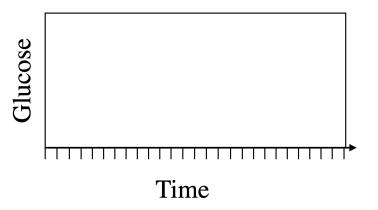
```
TS res = ts.keyBy("PATIENT ID")
```

```
.threshold window("TIMESTAMP", "GLUCOSE", 120)
```

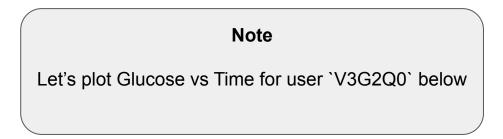
.aggregate("INSULIN", "TOTAL_INSULIN_EVENTS",

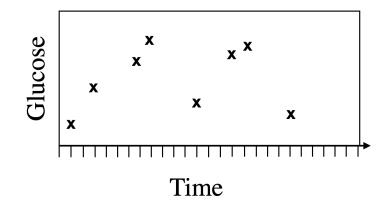
Agg::COUNT);

```
// Window aggregation
TS res = ts.keyBy("PATIENT_ID")
                .threshold_window("TIMESTAMP", "GLUCOSE", 120)
                .aggregate("INSULIN", "TOTAL_INSULIN_EVENTS",
```

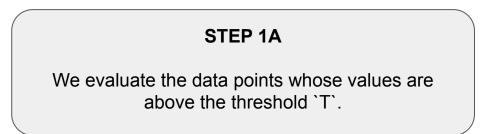

```
Agg::COUNT);
```

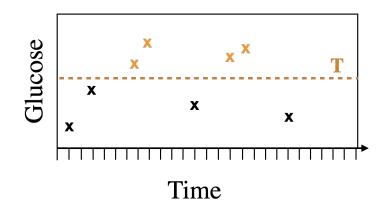
TIMESTAMP	PATIENT_ID	GLUCOSE	INSULIN	
1	V3G2Q0	80	0	TIMESTAMP PATIENT_ID
3	V3G2Q0	118	0	Glucose measurement Unique identifier for
7	V3G2Q0	123	1	time each patient
8	V3G2Q0	130	0	
12	V3G2Q0	112	1	GLUCOSE INSULIN
15	V3G2Q0	125	0	Measured Glucose Indicates an insulin
16	V3G2Q0	126	0	value (mg/dL).
20	V3G2Q0	90	0	

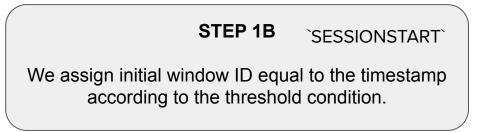

TIMESTAMP	PATIENT_ID	GLUCOSE	INSULIN
1	V3G2Q0	80	0
3	V3G2Q0	118	0
7	V3G2Q0	123	1
8	V3G2Q0	130	0
12	V3G2Q0	112	1
15	V3G2Q0	125	0
16	V3G2Q0	126	0
20	V3G2Q0	90	0

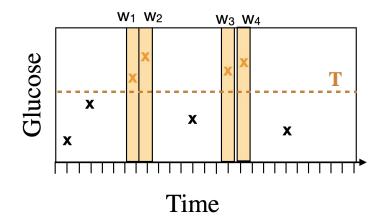

TIMESTAMP	GLUCOSE
1	80
3	118
7	123
8	130
12	112
15	125
16	126
20	90

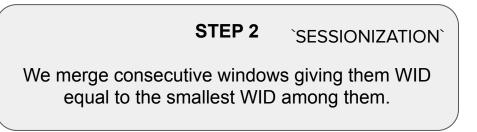
Note Let's plot Glucose vs Time for user `V3G2Q0` below

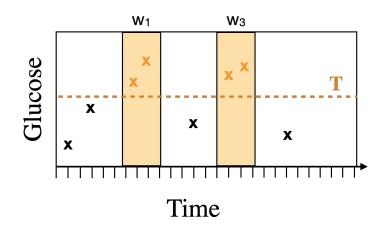

TIMESTAMP	GLUCOSE
1	80
3	118
7	123
8	130
12	112
15	125
16	126
20	90

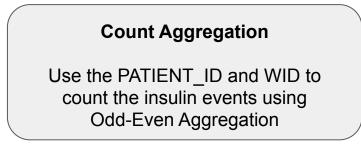


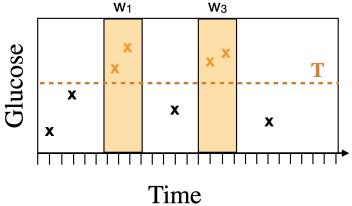

Naive sessionization: O(n) rounds


TIMESTAMP	GLUCOSE	G>T?
1	80	0
3	118	0
7	123	1
8	130	1
12	112	0
15	125	1
16	126	1
20	90	0

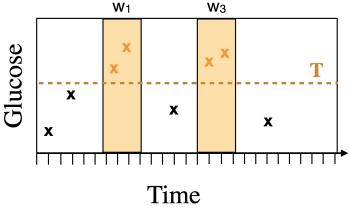



TIMESTAMP	GLUCOSE	G>T?	WID
1	80	0	-1
3	118	0	-1
7	123	1	7
8	130	1	8
12	112	0	-1
15	125	1	15
16	126	1	16
20	90	0	-1


TIMESTAMP	GLUCOSE	G>T?	WID
1	80	0	-1
3	118	0	-1
7	123	1	7
8	130	1	7
12	112	0	-1
15	125	1	15
16	126	1	15
20	90	0	-1



O(log n) rounds


TIMESTAMP	GLUCOSE	G>T?	WID	INSULIN
1	80	0	-1	0
3	118	0	-1	0
7	123	1	7	1
8	130	1	7	0
12	112	0	-1	1
15	125	1	15	0
16	126	1	15	0
20	90	0	-1	0

TIMESTAMP	GLUCOSE	G>T?	WID	INSULIN	#
1	80	0	-1	0	-1
3	118	0	-1	0	-1
7	123	1	7	1	1
8	130	1	7	0	-1
12	112	0	-1	1	-1
15	125	1	15	0	0
16	126	1	15	0	-1
20	90	0	-1	0	-1

Count Aggregation Use the PATIENT_ID and WID to count the insulin events using Odd-Even Aggregation

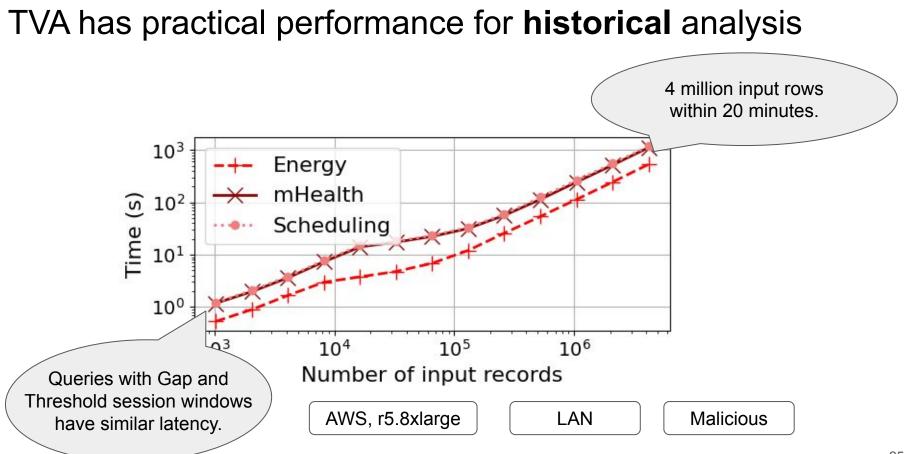
Evaluation and Results Highlights

Extensive performance evaluation for TVA

Different metrics

- 1. **Latency**: End-to-end execution time.
- 2. **Bandwidth**: Size of data exchanged.
- 3. **Cost**: Cloud service provider monetary cost.

System Performance


- 1. Microbenchmarking for primitives.
- 2. Application queries benchmarking.
- 3. Multi-threading scalability.
- 4. LAN vs. WAN.

Comparison with state-of-the-art

TVA vs. Waldo results for computations using the **WaldoTree** and **WaldoTable** data structures.

TVA satisfies time constraints of **online** queries for thousands of data owners

	Energy	mHealth	Scheduling	Real Time
Input frequency Result deadline	every 10s every 5m	every 5m every 1h	10k per minute every 10m	We assume practical data input frequency and result deadline.
Semi-Honest	17400	174700	52400	Practical
Malicious	8700	87300	26210	TVA can support thousands of data sources simultaneously.
1	Number of Dat			

TVA Summary

- 1. Easy-to-use, secure high-level time series analytics API.
- 2. Semi-honest and malicious security without information leakage.
- 3. Excellent performance for both online and historical analysis.
- 4. Code available at https://github.com/CASP-Systems-BU/tva

Muhammad Faisal PhD Student Boston University mfaisal@bu.edu