
TVA: A multi-party computation system for secure and
expressive time series analytics

https://sites.bu.edu/casp/

Muhammad Faisal
PhD Student
Boston University
mfaisal@bu.edu

John Liagouris
Assistant Professor
Boston University
liagos@bu.edu

Vasiliki Kalavri
Assistant Professor
Boston University
vkalavri@bu.edu

Mayank Varia
Associate Professor
Boston University
varia@bu.edu

Jerry Zhang
MS Student
UCSD
jerryzhang@ucsd.edu

Secure Time Series Analytics

2

Mobile health
analytics

Query:
Effect of insulin
during eating
periods.

Protect:
Individuals health
records.

Query:
Energy demand peak
and supply peak per
hour.

Protect:
Smart Grid
Individual’s privacy.

Energy Consumption
Monitoring

Resource
Optimization

Query:
Resource utilization
per job stages.

Protect:
Sensitive telemetry
data.

Windows: monitoring the evolution of metrics over time

3

● Tumbling Window:
 groups records into fixed-length time buckets.

● Gap Session Window:
groups records with timestamps difference
less than the ‘gap’ into the same session.

● Threshold Session Window:
groups consecutive records whose attribute
values are above the `threshold` into the same
session.

Inactivity period Activity period

Session Windows

Requirements for secure and expressive time series
analytics

4

TVA ✓ ✓ ✓ ✓ ✓

Zeph (OSDI 21) (✓) ✓ (✓) ⨯ ⨯

TimeCrypt
(NSDI 20) (✓) ✓ (✓) ⨯ ⨯

Waldo (S&P 22) ✓ ✓ ⨯ (✓) ⨯

No Leakage Time
Snapshots Windows Query

Composition

Unordered and
irregular

timestamps

System Overview

5

TVA contributions

6

Arbitrary complex analytics

Efficient Operator Composition

Efficient multi-threaded runtime,
high-level dataflow API and

vectorized execution.

System Design and Implementation

Secure Window Assignment Protocols

Division for tumbling window
assignment - Sessionization

Semi-honest and Malicious Security

3PC replicated secret sharing
scheme – 4PC Fantastic Four

Running Example: Mobile Health Analytics

7

Running Example: Mobile Health Analytics

8

Query:
“During each patient’s eating period, count the

number of insulin doses they have taken.”

// Data schema

TS ts = get_shares({"TIMESTAMP", "PATIENT_ID",

 "GLUCOSE","INSULIN",

 "TOTAL_INSULIN_EVENTS"});

// Window aggregation

TS res = ts.keyBy("PATIENT_ID")

.threshold_window("TIMESTAMP", "GLUCOSE", 120)

.aggregate("INSULIN", "TOTAL_INSULIN_EVENTS",

Agg::COUNT);

Running Example: Mobile Health Analytics

9
Query Implemented using TVA API

// Data schema

TS ts = get_shares({"TIMESTAMP", "PATIENT_ID",

 "GLUCOSE","INSULIN",

 "TOTAL_INSULIN_EVENTS"});

// Window aggregation

TS res = ts.keyBy("PATIENT_ID")

.threshold_window("TIMESTAMP", "GLUCOSE", 120)

.aggregate("INSULIN", "TOTAL_INSULIN_EVENTS",

Agg::COUNT);

Running Example: Mobile Health Analytics

10
Query Implemented using TVA API

// Data schema

TS ts = get_shares({"TIMESTAMP", "PATIENT_ID",

 "GLUCOSE","INSULIN",

 "TOTAL_INSULIN_EVENTS"});

// Window aggregation

TS res = ts.keyBy("PATIENT_ID")

.threshold_window("TIMESTAMP", "GLUCOSE", 120)

.aggregate("INSULIN", "TOTAL_INSULIN_EVENTS",

Agg::COUNT);

Running Example: Mobile Health Analytics

11
Query Implemented using TVA API

// Data schema

TS ts = get_shares({"TIMESTAMP", "PATIENT_ID",

 "GLUCOSE","INSULIN",

 "TOTAL_INSULIN_EVENTS"});

// Window aggregation

TS res = ts.keyBy("PATIENT_ID")

.threshold_window("TIMESTAMP", "GLUCOSE", 120)

.aggregate("INSULIN", "TOTAL_INSULIN_EVENTS",

Agg::COUNT);

Running Example: Mobile Health Analytics

12
Query Implemented using TVA API

Running Example: Threshold Session Window

13

TIMESTAMP PATIENT_ID GLUCOSE INSULIN

1 V3G2Q0 80 0

3 V3G2Q0 118 0

7 V3G2Q0 123 1

8 V3G2Q0 130 0

12 V3G2Q0 112 1

15 V3G2Q0 125 0

16 V3G2Q0 126 0

20 V3G2Q0 90 0

TIMESTAMP

Glucose measurement
time

PATIENT_ID

Unique identifier for
each patient

GLUCOSE

Measured Glucose
value (mg/dL).

INSULIN

Indicates an insulin
dose was given

Running Example: Threshold Session Window

14

TIMESTAMP PATIENT_ID GLUCOSE INSULIN

1 V3G2Q0 80 0

3 V3G2Q0 118 0

7 V3G2Q0 123 1

8 V3G2Q0 130 0

12 V3G2Q0 112 1

15 V3G2Q0 125 0

16 V3G2Q0 126 0

20 V3G2Q0 90 0

Running Example: Threshold Session Window

15

TIMESTAMP GLUCOSE

1 80

3 118

7 123

8 130

12 112

15 125

16 126

20 90

Note

Let’s plot Glucose vs Time for user `V3G2Q0` below

Running Example: Threshold Session Window

16

TIMESTAMP GLUCOSE

1 80

3 118

7 123

8 130

12 112

15 125

16 126

20 90

Note

Let’s plot Glucose vs Time for user `V3G2Q0` below

Naive sessionization: O(n) rounds

Running Example: Threshold Session Window

17

TIMESTAMP GLUCOSE G>T?

1 80 0

3 118 0

7 123 1

8 130 1

12 112 0

15 125 1

16 126 1

20 90 0

STEP 1A

We evaluate the data points whose values are
above the threshold `T`.

Running Example: Threshold Session Window

18

TIMESTAMP GLUCOSE G>T? WID

1 80 0 -1

3 118 0 -1

7 123 1 7

8 130 1 8

12 112 0 -1

15 125 1 15

16 126 1 16

20 90 0 -1

STEP 1B

We assign initial window ID equal to the timestamp
according to the threshold condition.

`SESSIONSTART`

Running Example: Threshold Session Window

19

TIMESTAMP GLUCOSE G>T? WID

1 80 0 -1

3 118 0 -1

7 123 1 7

8 130 1 7

12 112 0 -1

15 125 1 15

16 126 1 15

20 90 0 -1

STEP 2

We merge consecutive windows giving them WID
equal to the smallest WID among them.

`SESSIONIZATION`

O(log n) rounds

Running Example: Mobile Health Analytics

20

TIMESTAMP GLUCOSE G>T? WID INSULIN

1 80 0 -1 0

3 118 0 -1 0

7 123 1 7 1

8 130 1 7 0

12 112 0 -1 1

15 125 1 15 0

16 126 1 15 0

20 90 0 -1 0

Count Aggregation

Use the PATIENT_ID and WID to
count the insulin events using

Odd-Even Aggregation

Running Example: Mobile Health Analytics

21

TIMESTAMP GLUCOSE G>T? WID INSULIN #

1 80 0 -1 0 -1

3 118 0 -1 0 -1

7 123 1 7 1 1

8 130 1 7 0 -1

12 112 0 -1 1 -1

15 125 1 15 0 0

16 126 1 15 0 -1

20 90 0 -1 0 -1

Count Aggregation

Use the PATIENT_ID and WID to
count the insulin events using

Odd-Even Aggregation

Evaluation and Results Highlights

22

Extensive performance evaluation for TVA

Different metrics

1. Latency: End-to-end
execution time.

2. Bandwidth: Size of
data exchanged.

3. Cost: Cloud service
provider monetary cost.

System Performance

1. Microbenchmarking for
primitives.

2. Application queries
benchmarking.

3. Multi-threading
scalability.

4. LAN vs. WAN.

23

Comparison with
state-of-the-art

TVA vs. Waldo results for
computations using the
WaldoTree and WaldoTable
data structures.

TVA satisfies time constraints of online queries
for thousands of data owners

24

Practical

TVA can support thousands of
data sources simultaneously.

Real Time

We assume practical data
input frequency and result

deadline.

Number of Data sources (WAN)

Malicious 8700 87300 26210

Semi-Honest 17400 174700 52400

Result deadline every 5m every 1h every 10m

Input frequency every 10s every 5m 10k per minute

Energy mHealth Scheduling

TVA has practical performance for historical analysis

25

4 million input rows
within 20 minutes.

Queries with Gap and
Threshold session windows

have similar latency. LAN MaliciousAWS, r5.8xlarge

TVA Summary

1. Easy-to-use, secure high-level time series analytics API.
2. Semi-honest and malicious security without information leakage.
3. Excellent performance for both online and historical analysis.
4. Code available at https://github.com/CASP-Systems-BU/tva

26

Muhammad Faisal
PhD Student
Boston University
mfaisal@bu.edu

