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What is an 
Adversarial 
Attack?

+ =
Original Prediction: Panda Adversarial Noise Adversarial Prediction: 

Gibbon

Discover how to cause predictable errors in machine learning algorithms



Adversarial attacks aren’t generic!
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A Generic Attack Pipeline
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Prior work

• Not maintained – Repository was mainly 
created to reproduce experiments

• Limited in Scope - Only supports a few 
input types or relies attacks designed for 
images

• Hard to use – Lack of a simple UI or 
documentation for the average user

• Hard to access – Code is kept closed-
source or requires external approval

Attacks
Input Types Config 

Interface
Loss Objective Open 

SourceTabular Text Custom Model Distance

SLEIPNIR X X Malware X P X ~
Gym-

Malware X X Malware X P X ~
Graph 
Search P ~ X X P P ~

Pieraazi et 
al. P P P Unknown P X ~

Counterfit X →~* P X P P P P
URET 
(Ours) P P P P P P P

* - This work added additional support after submission



What is URET?

• An end-to-end adversarial 
evasion attack framework for 
any input type
• Configuration files enable quick, 

repeatable attack evaluations
• Standardized interface to 

support new, input types or 
tasks
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How does it work?

• URET explores a graph to find 
sequences of edges to an 
adversarial input
• Nodes – Input states
• Edges – Input Transformations
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Components - Edge ranking

• What edges should URET explore?
• Random – Select random edges to explore
• Brute Force – Explore every edge and select the highest 

fitness nodes
• Lookup Table – Select highest fitness nodes based on 

prior transformation history
• Model Guided – Select highest fitness nodes according 

to a model prediction

Config File

Edge Ranking



Components – Input Transformers

• What are the edge types? How does URET 
transition between nodes?
• An input transformer is defined by its 

transformation actions and constraints.
• Actions – How is the input transformed?

• Text can be added, deleted, or substituted
• Files can have their header modified

• Constraints – What must be true about the transformed 
input so it is valid?
• Text must use alphanumeric characters and not be empty
• An input can only be transformed a certain number of times

Config File

Edge Ranking

Input 
Transformers



Components – Vertex Scoring

• How is the fitness of a node evaluated? How 
adversarial is the node?
• Classification Loss – Fitness is based on the classification 

loss as in traditional attacks
• Distance Loss – Fitness based on the distance with 

respect to a certain target input state

• User can define their own customized scoring 
methods for URET to use as well 

Config File

Edge Ranking

Input 
Transformers

Vertex Scoring



Components – Graph Search

• What nodes should be kept for the next epoch?
• Beam Search – Keep the top-k nodes
• Simulated annealing – Keeps nodes based on the current 

temperature

Config File

Edge Ranking

Input 
Transformers

Vertex Scoring

Graph Search



Components – Input Dependencies

• What must be true about the input after 
transforming its features?
• Dependencies enforce inter-feature constraints
•  Examples:
• The total amount feature must be equal to the sum of 

savings and spending for an input tracking finances
• A numerical input may require that a subset of its 

features are normalized

Config File

Graph Search

Vertex Scoring

Edge Ranking

Input 
Transformers

Input 
Dependencies



Using URET on Non-image data
• 2018 Housing Mortgage Disclosure Act (HMDA)

• Based on the 13 features, predict if a mortgage application should be approved or rejected.
• Evaluated using 2000 total samples correctly approved/rejected by a pre-trained classifier.

• Domain name generation algorithm (DGA) dataset
• A domain name is converted into 20 numerical features.
• Based on the numerical features, predict if a domain name is real or was generated by DGA
• Evaluated using 10,000 total domain names either correctly predicted to be DGA or non-DGA 

by a pre-trained classifier.

Classifier Accuracy on 
Test Data

Accuracy on 
Evaluation Set

Decision Tree 91% 100%
Gradient Boosted 95% 100%

Logistic Regression 69% 100%
Random Forest 81% 100%

Multi-layer Perceptron 83% 100%

DGA 97% 100%



Results

HMDA results – URET could transform 7 of the 13 features



URET is pretty good

HMDA results – URET could transform 7 of the 13 features



Can trade performance for speed

HMDA results – URET could transform 7 of the 13 features



Can make exploration consistent

HMDA results – URET could transform 7 of the 13 features



Switching domains isn’t a problem

DGA Results – Generating adversarial text examples 

with a classification loss scoring function.



Reversing feature space modifications can 
be tricky

DGA Results – Generating adversarial text examples 

with a classification loss scoring function.

DGA Results – Generating adversarial numerical feature vectors

with a feature distance scoring function

Going from 3 
transformations to 13 

transformation per node



Don’t be obscure, be flexible

• To properly evaluate and address AI vulnerabilities, we need 
penetration testing tools for more than just images

Interested in using URET?Contact me: kheykholt@ibm.com


