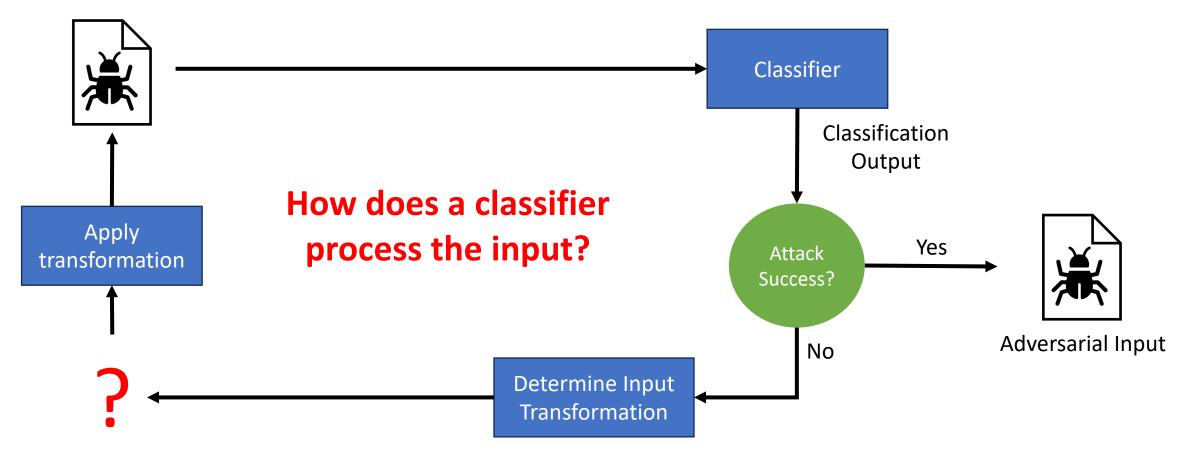
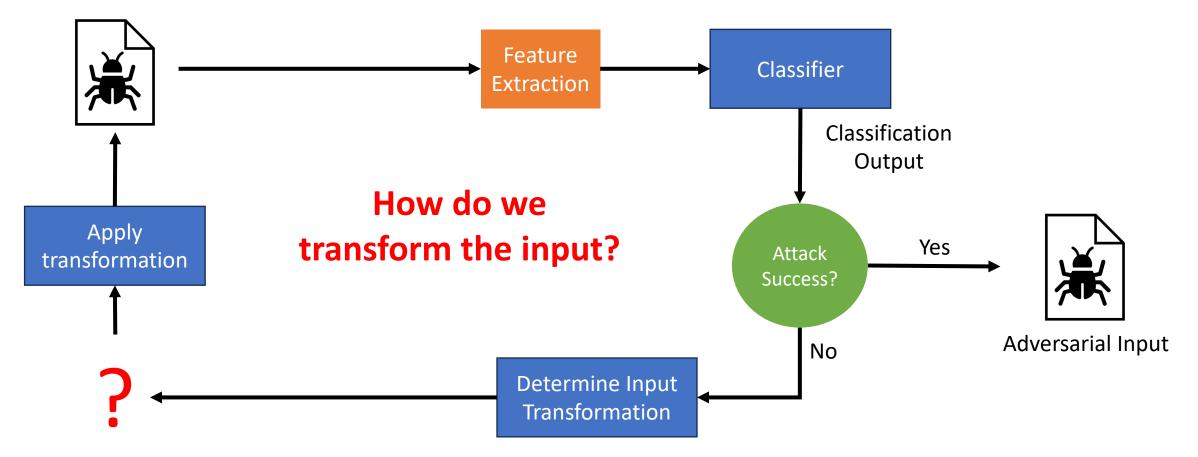

URET: Universal Robustness Evaluation Toolkit (for Evasion)

Kevin Eykholt, Taesung Lee, Douglas Schales, Jiyong Jang, Ian Molloy and Masha Zorin

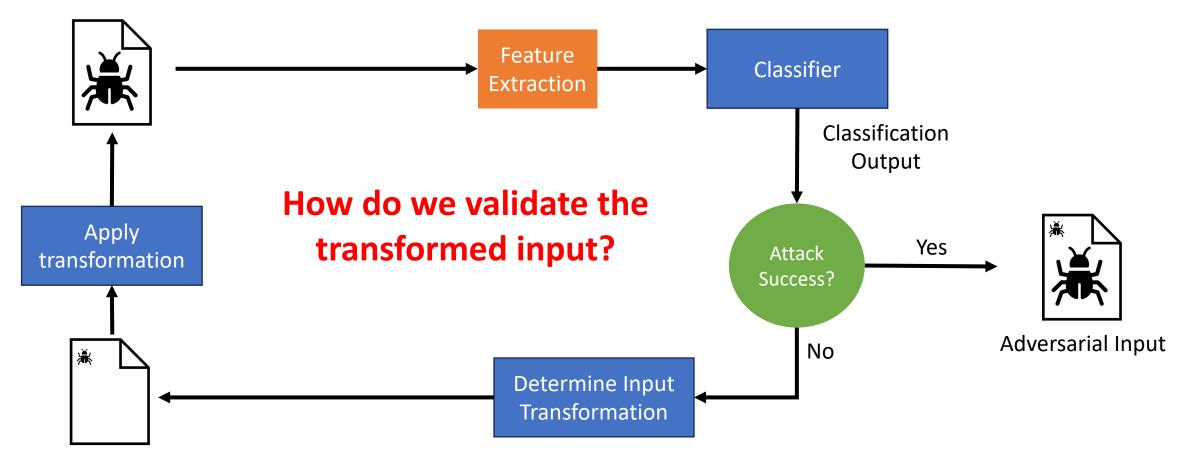
What is an Adversarial Attack?

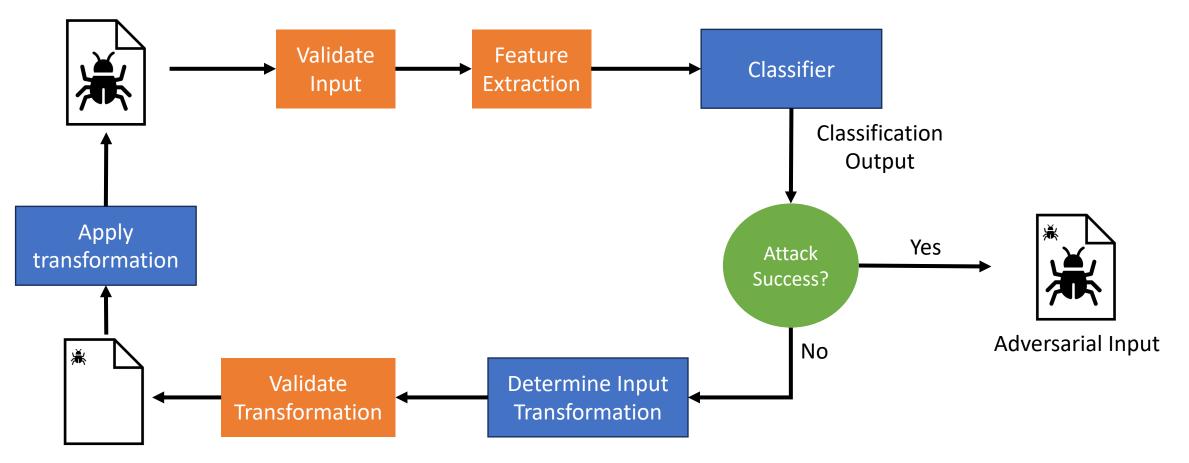
Original Prediction: Panda


Adversarial Noise


Adversarial Prediction: Gibbon

Discover how to cause predictable errors in machine learning algorithms

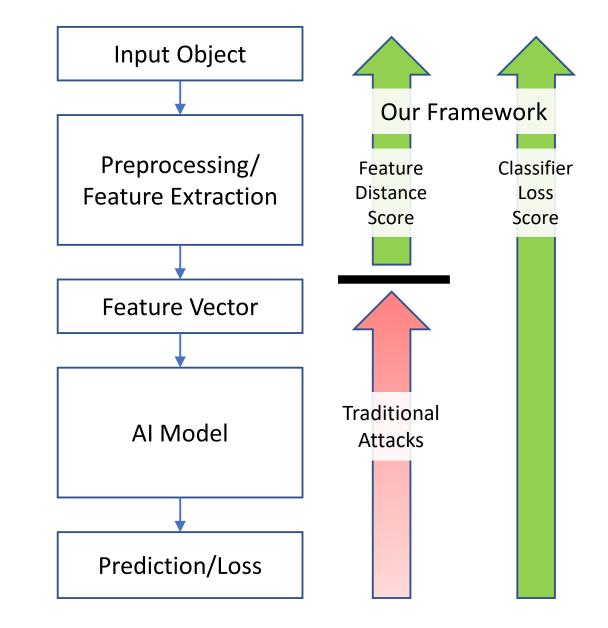

Adversarial attacks aren't generic!


Adversarial attacks aren't generic!

Adversarial attacks aren't generic!

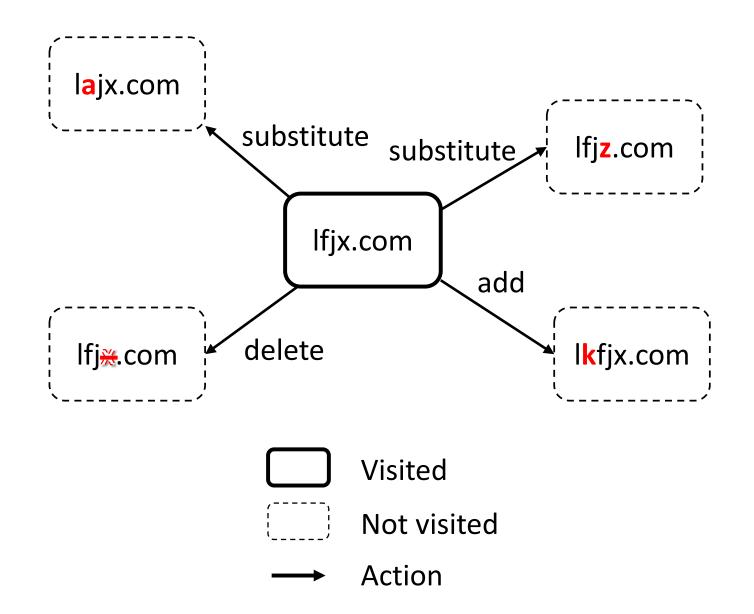
A Generic Attack Pipeline

Prior work

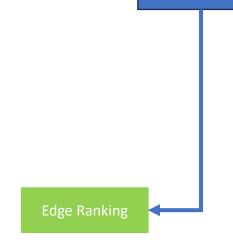

- Not maintained Repository was mainly created to reproduce experiments
- Limited in Scope Only supports a few input types or relies attacks designed for images
- Hard to use Lack of a simple UI or documentation for the average user
- Hard to access Code is kept closedsource or requires external approval

Attacks	In	put Ty	pes	Config	Loss Objective		Open
Allacks	Tabular	Text	Custom	Interface	Model	Distance	Source
SLEIPNIR	X	X	Malware	X	\checkmark	X	~
Gym- Malware	x	X	Malware	x	\checkmark	x	~
Graph Search	\checkmark	~	X	X	\checkmark	\checkmark	~
Pieraazi et al.	\checkmark	\checkmark	\checkmark	Unknown	\checkmark	x	~
Counterfit	X → ~*	\checkmark	X	\checkmark	\checkmark	\checkmark	\checkmark
URET (Ours)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

* - This work added additional support after submission

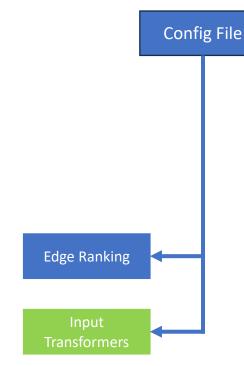

What is URET?

- An end-to-end adversarial evasion attack framework for any input type
- Configuration files enable quick, repeatable attack evaluations
- Standardized interface to support new, input types or tasks

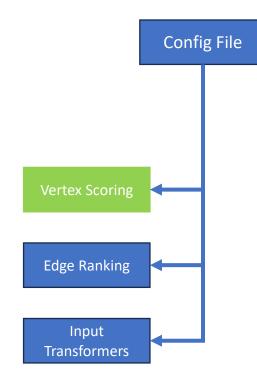

How does it work?

- URET explores a graph to find sequences of edges to an adversarial input
- Nodes Input states
- Edges Input Transformations

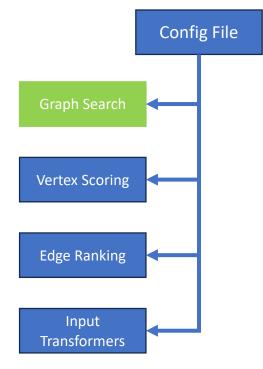
Components - Edge ranking


- What edges should URET explore?
 - Random Select random edges to explore
 - Brute Force Explore every edge and select the highest fitness nodes
 - Lookup Table Select highest fitness nodes based on prior transformation history
 - Model Guided Select highest fitness nodes according to a model prediction

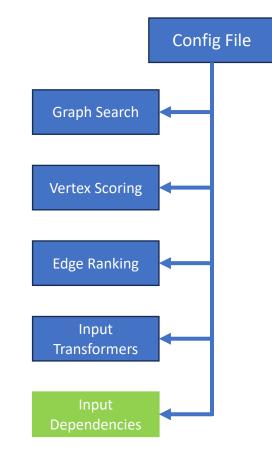
Config File


Components – Input Transformers

- What are the edge types? How does URET transition between nodes?
- An input transformer is defined by its *transformation actions* and *constraints*.
 - Actions How is the input transformed?
 - Text can be added, deleted, or substituted
 - Files can have their header modified
 - Constraints What must be true about the transformed input so it is valid?
 - Text must use alphanumeric characters and not be empty
 - An input can only be transformed a certain number of times


Components – Vertex Scoring

- How is the fitness of a node evaluated? How *adversarial* is the node?
 - Classification Loss Fitness is based on the classification loss as in traditional attacks
 - Distance Loss Fitness based on the distance with respect to a certain target input state
- User can define their own customized scoring methods for URET to use as well


Components – Graph Search

- What nodes should be kept for the next epoch?
 - Beam Search Keep the top-k nodes
 - Simulated annealing Keeps nodes based on the current temperature

Components – Input Dependencies

- What must be true about the input after transforming its features?
- Dependencies enforce inter-feature constraints
- Examples:
 - The *total amount* feature must be equal to the sum of *savings* and *spending* for an input tracking finances
 - A numerical input may require that a subset of its features are normalized

Using URET on Non-image data

- 2018 Housing Mortgage Disclosure Act (HMDA)
 - Based on the 13 features, predict if a mortgage application should be approved or rejected.
 - Evaluated using 2000 total samples correctly approved/rejected by a pre-trained classifier.
- Domain name generation algorithm (DGA) dataset
 - A domain name is converted into 20 numerical features.
 - Based on the numerical features, predict if a domain name is real or was generated by DGA
 - Evaluated using 10,000 total domain names either correctly predicted to be DGA or non-DGA by a pre-trained classifier.

Classifier	Accuracy on Test Data	Accuracy on Evaluation Set
Decision Tree	91%	100%
Gradient Boosted	95%	100%
Logistic Regression	69%	100%
Random Forest	81%	100%
Multi-layer Perceptron	83%	100%
DGA	97%	100%

Results

Model Arch.	Algorithm	Success Rate	Avg. # of Transforms	Avg. Time/sample
	Beam Search (Random)	38%	1.30	0.001 s
Decision Tree	Beam Search (Brute-Force)	92%	1.13	0.010 s
Decision free	Beam Search (Lookup Table)	89%	1.63	0.002 s
	Beam Search (Model Guided)	81%	1.85	0.018 s
	Simulated Annealing	97%	1.87	1.000 s
	Beam Search (Random)	14%	1.43	0.003 s
Caraliant Danata I Charaitean	Beam Search (Brute-Force)	58%	1.08	0.044 s
Gradient Boosted Classifier	Beam Search (Lookup Table)	26%	1.41	0.026 s
	Beam Search (Model Guided)	52%	1.74	0.058 s
	Simulated Annealing	57%	2.00	1.000 s
	Beam Search (Random)	34%	1.38	0.002 s
Lesidia Deservation	Beam Search (Brute-Force)	100%	1.05	0.007 s
Logistic Regression	Beam Search (Lookup Table)	69%	1.12	0.007 s
	Beam Search (Model Guided)	88%	1.93	0.020 s
	Simulated Annealing	100%	2.00	1.000 s
	Beam Search (Random)	27%	1.46	0.352 s
	Beam Search (Brute-Force)	100%	1.04	1.462 s
Random Forest	Beam Search (Lookup Table)	70%	1.08	1.177 s
	Beam Search (Model Guided)	86%	1.96	0.042 s
	Simulated Annealing	75%	1.87	1.000 s
	Beam Search (Random)	36%	1.41	0.198 s
Multi Loven Densenterer	Beam Search (Brute-Force)	100%	1.04	0.724 s
Multi-Layer Perceptron	Beam Search (Lookup Table)	94%	1.39	0.369 s
	Beam Search (Model Guided)	71%	1.92	0.297 s
	Simulated Annealing	97%	1.90	1.000 s

.

URET is pretty good

Model Arch.	Algorithm	Success Rate	Avg. # of Transforms	Avg. Time/sample
	Beam Search (Random)	38%	1.30	0.001 s
Decision Tree	Beam Search (Brute-Force)	92%	1.13	0.010 s
Decision Tree	Beam Search (Lookup Table)	89%	1.63	0.002 s
	Beam Search (Model Guided)	81%	1.85	0.018 s
	Simulated Annealing	97%	1.87	1.000 s
	Beam Search (Random)	14%	1.43	0.003 s
Caraliant Deserted Classifier	Beam Search (Brute-Force)	58%	1.08	0.044 s
Gradient Boosted Classifier	Beam Search (Lookup Table)	26%	1.41	0.026 s
	Beam Search (Model Guided)	52%	1.74	0.058 s
	Simulated Annealing	57%	2.00	1.000 s
	Beam Search (Random)	34%	1.38	0.002 s
La datia Damanian	Beam Search (Brute-Force)	100%	1.05	0.007 s
Logistic Regression	Beam Search (Lookup Table)	69%	1.12	0.007 s
	Beam Search (Model Guided)	88%	1.93	0.020 s
	Simulated Annealing	100%	2.00	1.000 s
	Beam Search (Random)	27%	1.46	0.352 s
	Beam Search (Brute-Force)	100%	1.04	1.462 s
Random Forest	Beam Search (Lookup Table)	70%	1.08	1.177 s
	Beam Search (Model Guided)	86%	1.96	0.042 s
	Simulated Annealing	75%	1.87	1.000 s
	Beam Search (Random)	36%	1.41	0.198 s
Multi I avon Donoontron	Beam Search (Brute-Force)	100%	1.04	0.724 s
Multi-Layer Perceptron	Beam Search (Lookup Table)	94%	1.39	0.369 s
	Beam Search (Model Guided)	71%	1.92	0.297 s
	Simulated Annealing	97%	1.90	1.000 s

.

Can trade performance for speed

Model Arch.	Algorithm	Success Rate	Avg. # of Transforms	Avg. Time/sample
	Beam Search (Random)	38%	1.30	0.001 s
Decision Tree	Beam Search (Brute-Force)	92%	1.13	0.010 s
	Beam Search (Lookup Table)	89%	1.63	0.002 s
	Beam Search (Model Guided)	81%	1.85	0.018 s
	Simulated Annealing	97%	1.87	1.000 s
	Beam Search (Random)	14%	1.43	0.003 s
Gradient Boosted Classifier	Beam Search (Brute-Force)	58%	1.08	0.044 s
Gradient Boosted Classifier	Beam Search (Lookup Table)	26%	1.41	0.026 s
	Beam Search (Model Guided)	52%	1.74	0.058 s
	Simulated Annealing	57%	2.00	1.000 s
	Beam Search (Random)	34%	1.38	0.002 s
Logistic Regression	Beam Search (Brute-Force)	100%	1.05	0.007 s
Logistic Regression	Beam Search (Lookup Table)	69%	1.12	0.007 s
	Beam Search (Model Guided)	88%	1.93	0.020 s
	Simulated Annealing	100%	2.00	1.000 s
	Beam Search (Random)	27%	1.46	0.352 s
Random Forest	Beam Search (Brute-Force)	100%	1.04	1.462 s
Kandom Forest	Beam Search (Lookup Table)	70%	1.08	1.177 s
	Beam Search (Model Guided)	86%	1.96	0.042 s
	Simulated Annealing	75%	1.87	1.000 s
	Beam Search (Random)	36%	1.41	0.198 s
Multi I avon Daugantuer	Beam Search (Brute-Force)	100%	1.04	0.724 s
Multi-Layer Perceptron	Beam Search (Lookup Table)	94%	1.39	0.369 s
	Beam Search (Model Guided)	71%	1.92	0.297 s
	Simulated Annealing	97%	1.90	1.000 s

Can make exploration consistent

Model Arch.	Algorithm	Success Rate	Avg. # of Transforms	Avg. Time/sample
	Beam Search (Random)	38%	1.30	0.001 s
Decision Tree	Beam Search (Brute-Force)	92%	1.13	0.010 s
Decision Tree	Beam Search (Lookup Table)	89%	1.63	0.002 s
	Beam Search (Model Guided)	81%	1.85	0.018 s
	Simulated Annealing	97%	1.87	1.000 s
	Beam Search (Random)	14%	1.43	0.003 s
	Beam Search (Brute-Force)	58%	1.08	0.044 s
Gradient Boosted Classifier	Beam Search (Lookup Table)	26%	1.41	0.026 s
	Beam Search (Model Guided)	52%	1.74	0.058 s
	Simulated Annealing	57%	2.00	1.000 s
	Beam Search (Random)	34%	1.38	0.002 s
Locistic Decreasion	Beam Search (Brute-Force)	100%	1.05	0.007 s
Logistic Regression	Beam Search (Lookup Table)	69%	1.12	0.007 s
	Beam Search (Model Guided)	88%	1.93	0.020 s
	Simulated Annealing	100%	2.00	1.000 s
	Beam Search (Random)	27%	1.46	0.352 s
Dan Jam Farrat	Beam Search (Brute-Force)	100%	1.04	1.462 s
Random Forest	Beam Search (Lookup Table)	70%	1.08	1.177 s
	Beam Search (Model Guided)	86%	1.96	0.042 s
	Simulated Annealing	75%	1.87	1.000 s
	Beam Search (Random)	36%	1.41	0.198 s
Multi-Layer Perceptron	Beam Search (Brute-Force)	100%	1.04	0.724 s
Wurd-Layer Ferceptron	Beam Search (Lookup Table)	94%	1.39	0.369 s
	Beam Search (Model Guided)	71%	1.92	0.297 s
	Simulated Annealing	97%	1.90	1.000 s

Switching domains isn't a problem

Algorithm	Success rate	Avg. # of Transforms	Avg. Time / sample
Beam Search (Random)	23%	1.84	0.093 s
Beam Search (Brute-Force)	85%	1.24	0.363 s
Beam Search (Lookup Table)	45%	1.61	0.277 s
Beam Search (Model Guided)	70%	2.56	0.400 s
Simulated Annealing	62%	2.28	1.000 s

DGA Results – Generating adversarial text examples

with a classification loss scoring function.

Reversing feature space modifications can be tricky

Algorithm	Success rate	Avg. # of Transforms	Avg. Time / sample
Beam Search (Random)	23%	1.84	0.093 s
Beam Search (Brute-Force)	85%	1.24	0.363 s
Beam Search (Lookup Table)	45%	1.61	0.277 s
Beam Search (Model Guided)	70%	2.56	0.400 s
Simulated Annealing	62%	2.28	1.000 s

DGA Results – Generating adversarial text examples

with a classification loss scoring function.

Algorithm	Success rate	Avg. # of Transforms	Avg. Time / sample
Beam Search (Random)	27%	1.87	0.091 s
Beam Search (Brute-Force)	56%	1.93	22.835 s
Beam Search (Lookup Table)	50%	1.79	12.415 s
Beam Search (Model Guided)	43%	2.69	0.606 s
Simulated Annealing	26%	2.72	1.000 s

Going from 3 transformations to 13 transformation per node

DGA Results – Generating adversarial numerical feature vectors

with a feature distance scoring function

Don't be obscure, be flexible

• To properly evaluate and address AI vulnerabilities, we need penetration testing tools *for more than just images*

IBM URET Public		☆ Edit Pins ▼ ③ Watch 4 ▼		
양 main → 양 1 branch ⓒ 0 tags		Go to file Add file - <> Code -		
辩 keykholt Update README.md		8bd1b4f on Jun 12 🕚 15 commits		
notebooks	Update README.md	2 months ago		
🖿 uret	bug fixes	6 months ago		
🗋 .gitignore	uret v0.1	10 months ago		
	Initial commit	10 months ago		
B README.md	Update README.md	2 months ago		
🗋 setup.py	Update setup.py	10 months ago		

Contact me: kheykholt@ibm.com

Interested in using URET?