# Dubhe: Succinct Zero-Knowledge Proofs for Standard AES and Related Applications

Changchang Ding and Yan Huang

**USENIX Security 2023** 



# Zero-Knowledge Proofs of Knowledge

Allow a prover  $\mathcal{P}$  to convince a verifier  $\mathcal{V}$  that  $\mathcal{P}$  holds secret witnesses w

s.t. C(x, w) = 1, without revealing w

**Succinct**: proof size / verifier time sublinear in  $-\begin{cases} |C| & (Weak Succinct) \\ |C| + |w| & (Strong Succinct) \end{cases}$ 

**Transparent**: no trusted setup



# State-of-the-art Transparent ZKPs

MPC-in-the-Head based protocols:

- KKW [KKW18], Limbo [dOT21], etc.
- Pros: Support arbitrary fields.
- · Cons: Not succinct.

Virgo [ZXZS19] / Virgo++ [ZLWZ<sup>+</sup>21]

- Using GKR [GKR08] and LDT
- Pros: Strong succinctness
- Cons: Constraints on choices of fields

Question:

Is it possible to construct a concretely-efficient succinct ZKPoK that can easily support computations on arbitrary fields?



# **Dubhe: Summary of Contributions**

- 1. Succinct proof in the number of gates.
- 2. No restriction on the underlying fields.
- 3. Applications:
  - Identification / digital signature schemes
  - Ring identification / signature schemes

All schemes based on unmodified use of AES



## **Observations and Dubhe's Goals**



|       | ZK         | Fast Verifier | Short Proof | Non-linear<br>gates | Linear gates |
|-------|------------|---------------|-------------|---------------------|--------------|
| KKW   | $\odot$    | (t)           |             |                     | $\odot$      |
| GKR   |            | $\bigcirc$    | $\bigcirc$  | (                   |              |
| FLPCP | $\odot$    |               | $\odot$     | $\odot$             | N/A          |
| Dubhe | $\bigcirc$ | $\odot$       | $\odot$     | $\odot$             | $\bigcirc$   |



# **Dubhe's Approach**



# **Proof of AES**

The only non-linear operation: special inverse in SubBytes

$$\begin{cases} b = a^{-1}, & a \neq 0 \\ b = 0, & a = 0 \end{cases}$$



Banquet [BdKO<sup>+</sup>21] / Limbo's approach: required **non-zero** inputs to all SubBytes

#### With extra witness:

$$a \cdot b = 1 \lor (a = 0 \land b = 0) \Leftrightarrow a(ab + 1) = 0 \land b(ba + 1) = 0$$

#### Without extra witness:

- Treat SubBytes as 8 table-lookups, each has 256 entries.
- Encode each table as an 8-variate polynomial.

#### **Counter-Mode AES**



extra-witness no-extra-witness

# **AES** based Identification / Signature

Identification (interactive):

- Keygen:  $pk \leftarrow AES_{sk}(ID_u)$
- Proof of Identity: w = sk,  $x = (ID_u, pk)$
- Circuit: AES with extra witness

Signature (non-interactive through Fiat-Shamir Transform):

- Keygen:  $pk \leftarrow AES_{sk}(ID_u)$
- Signature: a ZKP of w = sk,  $x = (ID_u, pk)$  with H(m) as randoms.
- Circuit: AES with extra witness, skip GKR to reduce number of rounds.

# AES based Identification (100-bit stat. sec.)

| Identification       | P time (ms) | V time (ms) | Comm. (KB) |
|----------------------|-------------|-------------|------------|
| QuickSilver [YSWW21] | 334         | 334         | 1644       |
| Virgo++              | 751         | 36          | 132        |
| Virgo                | 2265        | 21.4        | 174        |
| Limbo (n=16)         | 2.7         | 2.5         | 10         |
| Dubhe (n=16)         | 2.8         | 2.0         | 9.2        |
| Limbo (n=256)        | 12          | 11          | 5.8        |
| Dubhe (n=256)        | 6.6         | 6.0         | 6.1        |

# AES based Signature (~128-bit comp. sec.)

| Sec. | Signature              | S time (ms) | V time (ms) | Sign. size (KB) |
|------|------------------------|-------------|-------------|-----------------|
| 101  | Virgo                  | 2265        | 21          | 174             |
| 103  | Virgo++ (243 layers)   | 49          | 55          | 775             |
| 101  | Virgo++ (9 layers)     | 409         | 32          | 129             |
| 127  | Limbo                  | 3.6         | 2.5         | 21              |
| 128  | Dubhe                  | 4.8         | 4.0         | 30              |
| 133  | SPHINCS+-128 (smaller) | 164         | 0.4         | 29              |
| 128  | SPHINCS+-128 (faster)  | 17          | 0.7         | 49              |

# **Ring Identification / Signature**

**Ring Identification**: Prove in ZK one's identity belongs to a predefined group. **Ring Signature**: Sign messages on behalf of a group without revealing the signer's identity

$$AES_{sk}(0) = ID \land ID \in \{ID_i, i \in [m]\}$$

Proof of membership: multiplication tree.

$$ID \in \{ID_i, i \in [m]\} \Leftrightarrow \prod (ID - ID_i) = 0$$



## **Ring Identification**



IJIJ

# **Ring Signature**



ŲĮ

# Thank you!

We invite you to read our paper for details

and play with our implementation at

https://github.com/zkPrfs/dubhe

