
ARMore
Pushing Love Back Into Binaries

Luca Di Bartolomeo, Hossein Moghaddas, Mathias Payer

Late stage code modifications

2

adrp x0, 0x7fffff000
ldr x1, [x0, #8]

mov rax, 0x7fffff000
add rax, 8
mov rbx, [rax]

Binary Translation

1. Hardening
(CFI)

2. Profiling
(Valgrind)

3. Translation
(QEMU)

4. Fuzzing
(AFL-QEMU)

Binary rewriting allows late-stage code modifications
preserving original functionality.

Common use cases include:

Challenge 1: Distinguishing code and data

3

movz x0, 0x10
add x0, x0, 0x20
...

.data:

.string “sneaky string!!”
...
...
...
...
ldr x0, [.data]
b puts

Any mistake is fatal!

00 02 80 d2
00 80 00 91
...
...
73 6e 65 61
6b 79 20 73
74 72 69 6e
67 21 21 00
...
00 40 40 f8
00 00 02 14

How to avoid interpreting the string in .data as instructions?

Challenge 2: Pointer construction

4

Previous approaches relied on heuristics to rewrite pointers!

Aarch64 uses 4-byte fixed ISA, but pointers are 64 bit
Requires multiple instructions to “construct” a pointer:

adrp x0, 0x8000
add x0, x0, 0x128
. . .
. . .
adrp x0, 0x8000
sub x2, x2, x3
add x0, x0, 0x128

adrp x0, 0x8000
str x0, [sp, -0x8]
div x1, x2, x4
br x3
ldr x0, [sp, -0x8]
add x0, 0x128

adrp x0, 0x8000
mov x1, x0
add x1, x1, 0x128

How to recover the value of a pointer and rewrite it to preserve its target?

ARMore for non-PIC code: Layout replication

Replicate exactly the same address
space layout.

Pointers don’t need to be adjusted
anymore: they will point to the correct
data by construction.

5

No need to distinguish pointers from data anymore!

How to distinguish data and pointers?

ARMore for PIC code: Pointer constrution

On aarch64 only two instructions can read the program counter register:

bl / blr (Branch and link) adrp (Address page)

Every single pointer construction will always start with an adrp

6
PIC is handled by making all adrp target the replicated layout

But what about PIC?

ARMore for PIC code: Rebound table

We modify our layout replication to introduce
the rebound table:

.section rebound_table
0x400: b .text+0x0
0x404: b .text+0x4
0x408: b .text+0x8
0x40c: b .text+0x20
0x410: b .text+0x24
0x414: b .text+0x28

Transparent translation of code pointers at the cost of a single branch!
7

But code pointers? Functions get instrumented and change address!

ARMore for mixed data/text: XOM

New feature on ARM 8.2:

XOM: Execute-only memory

1. Set .text permissions to “--x”
2. Install a segfault handler only for .text read violations
3. Keep an old copy of .text and return the correct value

Support of data mixed with text without heuristics!
8

What if a binary tries to read from its own .text section? (literal pools)

ARMore use-case: Fuzzing!

ARMore comes with batteries included:

Coverage instrumentation to fuzz
closed-source software at the same
speeds as if you had source code.
(3x faster than AFL-QEMU!)

Binary Address Sanitizer instrumentation
makes triaging crashes easier than ever!

2 CVEs on closed source Nvidia software for CUDA
9

ARMore: Spread the Love for Aarch64 rewriting

Main challenges for Aarch64 rewriting:

- Distinguishing code and data
- Recovering pointer constructions

Key takeways:

- Binary rewriting for Aarch64 is easier and more precise than x86.
- No need for heuristics to rewrite aarch64 binaries!
- ARMore is open source at: https://github.com/HexHive/RetroWrite

https://github.com/hexhive/retrowrite

