
CIPHERH: Automated Detection of Ciphertext Side-
channel Vulnerabilities in Cryptographic
Implementations

Sen Deng1, Mengyuan Li2, Yining Tang1, Shuai Wang3, Shoumeng Yan4, Yinqian Zhang1

1Southern University of Science and Technology

2The Ohio State University

3Hong Kong University of Science and Technology

4The Ant Group

Trusted Execution Environment

Enclave

OS

Intel CPU

Enclave

Application

Intel SGXD

VM VM

VMM

AMD CPU

AMD SEVD

Confidentiality &
Integrity

2

Known Attacks
TEE is not a silver bullet

Ø Unencrypted VMCB
Ø ASID-based Isolation

Hardware Design Attacks

Transient Execution Attacks

 Ø Meltdown-like attacks
Ø Spectre-like attacks

Side Channel Attacks
Ø Cache-based attacks
Ø DRAM-based attacks

Memory Corruption Attacks
Ø Dark-ROP attacks
Ø Iago attacks

Thread Concurrency Attacks
Ø AsyncShock attacks
Ø COIN attacks

State Continuity Attacks
Ø Roll-back attacks

3

Known Attacks
TEE is not a silver bullet

Ø Unencrypted VMCB
Ø ASID-based Isolation

Hardware Design Attacks

Transient Execution Attacks

 Ø Meltdown-like attacks
Ø Spectre-like attacks

Side Channel Attacks
Ø Cache-based attacks
Ø DRAM-based attacks

Memory Corruption Attacks
Ø Dark-ROP attacks
Ø Iago attacks

Thread Concurrency Attacks
Ø AsyncShock attacks
Ø COIN attacks

State Continuity Attacks
Ø Roll-back attacks

4

Ciphertext Side Channels

[1] Li, Mengyuan, Yinqian Zhang, Huibo Wang, Kang Li, and Yueqiang Cheng. "CIPHERLEAKS: Breaking Constant-time Cryptography on
AMD SEV via the Ciphertext Side Channel." In 30th USENIX Security Symposium (USENIX Security 21), pp. 717-732. 2021.
[2]Li, Mengyuan, Luca Wilke, Jan Wichelmann, Thomas Eisenbarth, Radu Teodorescu, and Yinqian Zhang. "A Systematic Look at
Ciphertext Side Channels on AMD SEV-SNP." In 2022 IEEE Symposium on Security and Privacy (SP), pp. 1541-1541. IEEE Computer Society,
2022.

For [1], CVE-2020-12966
https://www.amd.com/en/corporate/product-security/bulletin/amd-sb-1013

For [2], CVE-2021-46744
https://www.amd.com/en/corporate/product-security/bulletin/amd-sb-1033

The ciphertext side-channel was first illustrated in [1] to infer
secret register values from the VM Save Area (VMSA) in SEV-SNP.

Then it was extended to any memory space including kernel
areas, heaps as well as stacks in [2].

A emerging threats and new types of side channels toward TEEs

5

https://www.amd.com/en/corporate/product-security/bulletin/amd-sb-1013
https://www.amd.com/en/corporate/product-security/bulletin/amd-sb-1033

Ciphertext Side Channels

[1] Li, Mengyuan, Yinqian Zhang, Huibo Wang, Kang Li, and Yueqiang Cheng. "CIPHERLEAKS: Breaking Constant-time Cryptography on
AMD SEV via the Ciphertext Side Channel." In 30th USENIX Security Symposium (USENIX Security 21), pp. 717-732. 2021.
[2]Li, Mengyuan, Luca Wilke, Jan Wichelmann, Thomas Eisenbarth, Radu Teodorescu, and Yinqian Zhang. "A Systematic Look at
Ciphertext Side Channels on AMD SEV-SNP." In 2022 IEEE Symposium on Security and Privacy (SP), pp. 1541-1541. IEEE Computer Society,
2022.

For [1], CVE-2020-12966
https://www.amd.com/en/corporate/product-security/bulletin/amd-sb-1013

For [2], CVE-2021-46744
https://www.amd.com/en/corporate/product-security/bulletin/amd-sb-1033

The ciphertext side-channel was first illustrated in [1] to infer
secret register values from the VM Save Area (VMSA) in SEV-SNP.

Then it was extended to any memory space including kernal
areas, heaps as well as stacks in [2].What leads to the Ciphertext Side Channels ?

6

https://www.amd.com/en/corporate/product-security/bulletin/amd-sb-1013
https://www.amd.com/en/corporate/product-security/bulletin/amd-sb-1033

Hardware Memory Encryption

AMD
CPU

Encrypt Engine

DRAM

Memory encryption is the primary means to protect memory
data against an adversary with either software-level or
physical-level access to the memory content.

Block Cipher
Encryption

Block Cipher
Encryption

Key Key Block Cipher
Encryption

Ciphertext Ciphertext Ciphertext

Key

Plaintext Plaintext Plaintext

Initialization Vector (IV)

Cipher Block Chaining (CBC) mode encryption

7

Infeasible Encryption Modes

AMD
CPU

Encrypt Engine

DRAM

Chaining Modes: can not support random memory
access in an efficient manner.

Block Cipher
Encryption

Block Cipher
Encryption

Key Key Block Cipher
Encryption

Ciphertext Ciphertext Ciphertext

Key

Plaintext Plaintext Plaintext

Initialization Vector (IV)

Cipher Block Chaining (CBC) mode encryption

8

AMD
CPU

Encrypt Engine

DRAM

Block Cipher
Encryption

Ciphertext Ciphertext Ciphertext

Key

Counter Counter+1 Counter+2

Counter (CTR) mode encryption

Plaintext

Block Cipher
Encryption

Plaintext

Block Cipher
Encryption

Plaintext

Key Key

Freshness Modes: for large encrypted memory,
additional space and lantency are need to maintain
the counters.

9

Infeasible Encryption Modes

128-Bit AES Encryption with XEX Mode

Memory is independently encrypted per 128-bit block.

m1

m2

m3

m4

...

...

c1

c2

c3

c4

...

...

Plaintext Ciphertext
0x0
0x10

0x20
0x30

10

128-Bit AES Encryption with XEX Mode

Memory is independently encrypted per 128-bit block.

m1

m2

m3

m4

...

...

c1

c2

c3

c4

...

...

Plaintext Ciphertext
0x0
0x10

0x20
0x30

To avoid inferring plaintext (m) via the
same ciphertext (C).

C = T(sPAm) Enc(m T(sPAm))

XEX mode with a tweak function T(x).

11

Ciphertext Side Channels

Memory is independently encrypted per 128-bit block.

m1

m2

m3

m4

...

...

c1

c2

c3

c4

...

...

Plaintext Ciphertext
0x0
0x10

0x20
0x30

The same plaintext at the same address is
encrypted into identical ciphertext.

12

Ciphertext Side Channels

Memory is independently encrypted per 128-bit block.

m1

m2

m3

m4

...

...

c1

c2

c3

c4

...

...

Plaintext Ciphertext
0x0
0x10

0x20
0x30

The same plaintext at the
same address is encrypted
into identical ciphertext.

Deterministic Encryption:
AMD SEV
Intel TDX
Intel SGX on Ice Lake SP
ARM CCA

13

Inferring Relations of Key Bits

k1 = read_key_bit(0)
k2 = read_key_bit(1)

a = k1
…
a = k2
...

cryptographic
program

14

k1 = read_key_bit(0)
k2 = read_key_bit(1)

observation1

observation2

a = k1
…
a = k2
...

cryptographic
program

15

Inferring Relations of Key Bits

k1 = read_key_bit(0)
k2 = read_key_bit(1)

ciphertext 1

ciphertext 2

observing ciphertext changes  k1 != k2

observation1

observation2

observation1

observation2

a = k1
…
a = k2
...

cryptographic
program

①

①

16

Inferring Relations of Key Bits

k1 = read_key_bit(0)
k2 = read_key_bit(1)

ciphertext 1

ciphertext 2

observing ciphertext changes  k1 != k2
observing ciphertext no change  k1 == k2

observation1

observation2

observation1

observation2

a = k1
…
a = k2
...

cryptographic
program

① ②

①
②

17

Inferring Relations of Key Bits

Hardware-level Mitigation

18

Change the memory encryption mode ...

19

Change the memory encryption mode ?

too much performance overhead !

Hardware-level Mitigation

Software-level Mitigation

20

AMD has released a white paper to guide software developers in defending
against ciphertext side channels.

Ø 1 . Data in Register

Ø 2 . Data Padding

Ø 3 . Data Masking

Ø 4 . Data Moving

Motivation

CipherH servers as a "vulnerability detector" to assist developers in

assessing potential attack vectors of their software under ciphertext

side channels.

21

• Two sequential memory write operations.
• The two operations are secret-dependent.

22

Model Ciphertext Side Channels

• Two sequential memory write operations.
• The two operations are secret-dependent.

• Two writes: W1() & W2()
• Two secrets: k1 & k2

• Written values: W1(k1) & W2(k2)

23

Model Ciphertext Side Channels

• Two sequential memory write operations.
• The two operations are secret-dependent.

• Two writes: W1() & W2()
• Two secrets: k1 & k2

• Written values: W1(k1) & W2(k2)

• Safe Scenario 1:

• Safe Scenario 2:

24

Model Ciphertext Side Channels

25

Safe

Model Ciphertext Side Channels

ciphertext keeps unchanged

25

Safe Safe

ciphertext keeps unchanged ciphertext changes

Model Ciphertext Side Channels

26

Safe Safe

the change of ciphertext depends on k

Model Ciphertext Side Channels

ciphertext changes ciphertext keeps unchanged

Information Leakage Scenario:

It models two different executions following the same path, such that during one execution,
the second memory write operation changes ciphertext, whereas during the other execution,
the second memory write operation retains the ciphertext.

28

Model Ciphertext Side Channels

Design

Tainted
Function F1

Tainted
Function F1

Tainted
Function F1

Crypto
Software

Tainted
Function F1

Symbolic
Execution

taint secrets

intra-procedural
leakage in Fi

Constraint
Solving

Ciphertext Side
Channel

sat?

inter-procedural
leakage in callees of Fi

Ciphertext
Side Channel

each Fi

pattern match?

CIPHERH

Dynamic
Taint Analysis

Dynamic Taint Analysis & Static Symbolic Execution

29

Dynamic Taint Analysis

Tainted
Function F1

Tainted
Function F1

Tainted
Function F1

Crypto
Software

Tainted
Function F1

Symbolic
Execution

taint secrets

intra-procedural
leakage in Fi

Constraint
Solving

Ciphertext Side
Channel

sat?

inter-procedural
leakage in callees of Fi

Ciphertext
Side Channel

each Fi

pattern match?

CIPHERH

Dynamic
Taint Analysis

Taint source: secret
Taint propagation: based on DFSan
Taint sink: function parameter, return value, memory load

30

Intra-Procedural Symbolic Analysis

Tainted
Function F1

Tainted
Function F1

Tainted
Function F1

Crypto
Software

Tainted
Function F1

Symbolic
Execution

taint secrets

intra-procedural
leakage in Fi

Constraint
Solving

Ciphertext Side
Channel

sat?

inter-procedural
leakage in callees of Fi

Ciphertext
Side Channel

each Fi

pattern match?

CIPHERH

Dynamic
Taint Analysis

Memory lookup table: M and W
Constraint Solver: answer Yes or No
Outputs: two memory writes address and a pair of secrets

31

Inter-Procedural Symbolic Analysis

Tainted
Function F1

Tainted
Function F1

Tainted
Function F1

Crypto
Software

Tainted
Function F1

Symbolic
Execution

taint secrets

intra-procedural
leakage in Fi

Constraint
Solving

Ciphertext Side
Channel

sat?

inter-procedural
leakage in callees of Fi

Ciphertext
Side Channel

each Fi

pattern match?

CIPHERH

Dynamic
Taint Analysis

Pattern :
① (1) F is repeatedly called by its caller function Fc at

the same callsite.
 (2) At least one input parameters of F is tainted.

32

Result

Implementation Algorithm Opt. Intraprocedural Symbolic Execution Interprocedural Symbolic Execution Function
 (Vulnerable/Analyzed) Functions Vulnerable Program Points (Vulnerable/Analyzed) Functions Vulnerable Program Points (Tainted/Covered)

WolfSSL 5.3.0 ECDSA -O2 3/53 6 1/2 12 53/92
WolfSSL 5.3.0 RSA -O2 3/30 14 3/5 30 30/78
OpenSSL 3.0.2 ECDSA -O3 4/68 6 4/11 29 68/1061
OpenSSL 3.0.2 RSA -O3 9/142 53 11/38 55 142/1296
MbedTLS 3.1.0 ECDH -O2 2/37 2 2/5 5 37/87
MbedTLS 3.1.0 RSA -O2 2/39 2 4/7 22 39/83

 Total 23/369 83 25/68 153 369/2697

33

Result

Implementation Algorithm Opt. Intraprocedural Symbolic Execution Interprocedural Symbolic Execution Function
 (Vulnerable/Analyzed) Functions Vulnerable Program Points (Vulnerable/Analyzed) Functions Vulnerable Program Points (Tainted/Covered)

WolfSSL 5.3.0 ECDSA -O2 3/53 6 1/2 12 53/92
WolfSSL 5.3.0 RSA -O2 3/30 14 3/5 30 30/78
OpenSSL 3.0.2 ECDSA -O3 4/68 6 4/11 29 68/1061
OpenSSL 3.0.2 RSA -O3 9/142 53 11/38 55 142/1296
MbedTLS 3.1.0 ECDH -O2 2/37 2 2/5 5 37/87
MbedTLS 3.1.0 RSA -O2 2/39 2 4/7 22 39/83

 Total 23/369 83 25/68 153 369/2697

• Use solutions k1, k2, k1', k2' to validate all intraprocedural Vul. Program points.

34

Result

Implementation Algorithm Opt. Intraprocedural Symbolic Execution Interprocedural Symbolic Execution Function
 (Vulnerable/Analyzed) Functions Vulnerable Program Points (Vulnerable/Analyzed) Functions Vulnerable Program Points (Tainted/Covered)

WolfSSL 5.3.0 ECDSA -O2 3/53 6 1/2 12 53/92
WolfSSL 5.3.0 RSA -O2 3/30 14 3/5 30 30/78
OpenSSL 3.0.2 ECDSA -O3 4/68 6 4/11 29 68/1061
OpenSSL 3.0.2 RSA -O3 9/142 53 11/38 55 142/1296
MbedTLS 3.1.0 ECDH -O2 2/37 2 2/5 5 37/87
MbedTLS 3.1.0 RSA -O2 2/39 2 4/7 22 39/83

 Total 23/369 83 25/68 153 369/2697

• Validate interprocedural results manully and confirm 144 out of 153 findings are ture positives.
• CipherH reports a vulnerable patch in function mp_cond_swap_ct in WolfSSL [1].

35
[1] The vulnerability has been fixed in WolfSSL version 5.4.0 onwards.

Efficiency Comparison

 Abacus [1] CacheS [2] CacheAudit [3]

RSA/OpenSSL failed (in a few seconds) failed failed

RSA/MbedTLS failed (in 7.3h) failed failed

ECDH/MbedTLS timeout (> 18h) failed failed

None of them are scalable to analyze our test cases!

36

[1] Qinkun Bao, Zihao Wang, Xiaoting Li, James R Larus, and Dinghao Wu. Abacus: Precise side-channel analysis. ICSE, 2021.
[2] Shuai Wang, Yuyan Bao, Xiao Liu, Pei Wang, Danfeng Zhang, and Dinghao Wu. Identifying cache-based side channels through secret-
augmented abstract interpretation. USENIX Security, 2019.
[3] Goran Doychev, Dominik Feld, Boris Kopf, Laurent Mauborgne, and Jan Reineke. CacheAudit: A tool for the static analysis of cache side
channels. USENIX Security, 2013.

Pattern Influence

 Pattern Function Inter-Procedural False
 (Vulnerable/Analyzed) Vul. Program Points Positives

① & ② 2/5 5 1

 ① 8/19 17 10

 Nil 11/35 21 14

The two patterns ① and ② are adequate for delivering a scalable inter-procedural
analysis with convincing accuracy and low false positive rates.

Inter-procedural findings for the ECDH/MbedTLS case by different patterns.

37

Compiler Optimization

 Optimization Function Number Intra-Procedural Function Number
 Options (Vulnerable/Analyzed) Vul. Program Points (Tainted/Covered)

 -O2 3/30 14 30/78

 -O0 12/69 33 69/153

Aggressive optimization tends to place variables into registers, resulting in less
memory writes and thus less vulnerabilities.

Inter-procedural findings for the ECDH/MbedTLS case by different patterns.

38

Conclusion

• Summary

• CIPHERH formulates for the first time ciphertext side channels.
• CIPHERH can identify ciphertext side channels in production software.

• Discussion

• CIPHERH may produce false positives and false negatives.
• Some tools may be developed to automate the elimination of vulnerable

program points.

39

Thanks for Listening!
Sen Deng: 12032873@mail.sustech.edu.cn

Code: https://github.com/Sen-Deng/CipherH Paper

