
BoKASAN: Binary-only Kernel Address
Sanitizer for Effective Kernel Fuzzing

Mingi Cho1,2, Dohyeon An1,3, Hoyong Jin1,4, Taekyoung Kwon1

1 Yonsei University

2 Theori Inc.

3 PiLab Technology Inc.

4 AutoCrypt Inc.

Kernel Bugs are Critical

Kernel Fuzzer + KASAN

Kernel
Source code

Address
Sanitizer

Build
Kernel

Instrument
Sanitizer

Kernel
w/ KASAN

Fuzzer
(e.g., Syzkaller)

Random
Inputs

Bug Report

KASAN detected 26% of
the bugs found by Syzkaller

Kernel Address Sanitizer

• Dynamic memory error detector

• Using source level instrumentation

• KASAN detects non-crashing bugs

• Via redzone-based detection

• Use-After-Free, Out-of-Bounds Access

Buggy
Kernel Subsystem

obj1 obj2

64

w/o KASAN

obj1 obj2

w/ KASAN
64

obj1 + 70

Binary-only Kernels?

Kernel
Source code

Address
Sanitizer

Build
Kernel

Instrument
Sanitizer

Kernel
w/ KASAN

Fuzzer
(e.g., Syzkaller)

Random
Inputs

KASAN can’t be applied
to binary-only kernels

Challenge: KASAN + Binary OS

• COTS OS vulnerabilities are critical

• Affect the most users

• Most COTS OS are binary-only

• Like Windows, macOS

• KASAN needs OS source code

• for source-level instrumentation

• Binary-only approach is needed for
COTS OSKernel

w/ KASAN

Fuzzer

Input
(Trigger OOB)

Feedback

Crash No react

No Feedback

COTS

Kernel

Way to binary-only: Static Instrumentation

FuzzerRewrited
Kernel

System call

• Static instrumentation

• Perform static instrumentation such as binary rewriting

• Can achieve performance close to native execution

• Difficult to ensure soundness

Native
Kernel

Rewriting

Way to binary-only: Dynamic Instrumentation

Fuzzer

Emulator

Emulated
Kernel

System call

• Dynamic Instrumentation

• ❶ Emulating the kernel or ❷ Hooking a page fault handler

• Easy to Implement

Native
Kernel

1

2

• High performance overhead

• Full Emulation: ~85 times

• Hook Page Fault Handler: ~644 times

Triggered by

Bug Type Fuzzer Process Other

UAF 15 1

OOB 5 1

Total 20 2

New Observation: Most crashes occur in
fuzzer processes

Process 1
(Child of Fuzzer)

Object A

Process 2
Object B

Process 3
Object C Sanitizer Kernel

Object
Access

Validity
Check

Sanitize all memory objects causes overhead

Process 1
(Child of Fuzzer)

Object A

Process 2
Object B

Process 3
Object C

Our Insight: Focus Solely on the target

Process 1
(Child of Fuzzer)

Object A

Process 2
Object B

Process 3
Object C

Sanitizer

Kernel

Object
Access

Sanitize
(Slow)

Direct Access
(Fast)

FuzzerNative
Kernel

System call
Fuzzer-related
Memory Access

BoKASAN
Register

Fuzzer Process

• Page fault-based Selective Sanitization

• Sanitize fuzzer-generated inputs only

• Minimized page fault overhead

• Possible in all COTS OS via paging

• We introduce BoKASAN, the first binary-only KASAN

Basic Concept: Selective Sanitization

Typical Kernel Fuzzing Flow

Manager

Memory
Allocation

Region

Shadow Memory
Region

Worker

Virtual Machine

Fuzzer

input

Run VM

Collect Coverage/Bug Info

OS Kernel
(build with KASAN)

Kernel Subsystems KASAN

Alloc

Dealloc

Memory

R/W

syscall

Bug Report

Sanitize

BoKASAN: Design Overview

Manager

Worker

Virtual Machine

Fuzzer

input

Coverage/Bug Info

OS Kernel
(Native)

Kernel
Subsystems

Alloc

Dealloc

Memory

R/W

syscall

Bug Report

Selective
Sanitizing

ioctl

Sanitized Memory
Region

Shadow Memory
Region

Memory Allocation
Region

BoKASAN

Fuzzing workflow of BoKASAN
kmalloc
kfree

…

Page Fault
Handler

BoKASAN

0. At boot time, BoKASAN hooks kernel memory functions and fault handlers

Fuzzing workflow of BoKASAN
Fuzzer

Fuzzer Agent

1

Worker

kmalloc
kfree

…

Page Fault
Handler

1. Fuzzer spawns a worker to execute syscall it generates.

Sanitized Memory
Region

Shadow Memory
Region

Memory Allocation
Region

BoKASAN

Fuzzer

Target PID List1

2. Worker registers its PID to BoKASAN

Worker

Fuzzing workflow of BoKASAN

2

kmalloc
kfree

…

Page Fault
Handler

Sanitized Memory
Region

Shadow Memory
Region

Memory Allocation
Region

BoKASAN

Fuzzer

Target PID List1

Worker

2

3

Fuzzing workflow of BoKASAN

BoKASAN

kmalloc
kfree

…

Page Fault
Handler

Sanitized Memory
Region

Shadow Memory
Region

Memory Allocation
Region

3. Worker executes syscalls  
which request kernel memory allocation

kmalloc
kfree

…

Fuzzer

Worker

Target PID List1

Sanitized Memory
Region

Shadow Memory
Region

Memory Allocation
Region

2

3

Fuzzing workflow of BoKASAN

Page Fault
Handler

4. If PID is registered, memory is allocated in sanitized region
without access permission. Otherwise, allocated normally.

BoKASAN

4

kmalloc
kfree

…

Fuzzer

Worker

Target PID List1

Sanitized Memory
Region

Shadow Memory
Region

Memory Allocation
Region

Fuzzing workflow of BoKASAN

5

2 BoKASAN

3

4

Page Fault
Handler

5. Execute syscall, which accesses memory in the sanitized region.

kmalloc
kfree

…

Fuzzer

Worker

Target PID List1

Sanitized Memory
Region

Shadow Memory
Region

Memory Allocation
Region

2

3

4

Fuzzing workflow of BoKASAN

6

Page Fault
Handler 6

BoKASAN
6. Page fault is triggered due to lack of access permission. 

 BoKASAN's fault handler initiates.

Fuzzing workflow of BoKASAN

Shadow Memory
Region

2 BoKASAN
PF Handler

Sanitized Memory
Region

 if is_bokasan_alloc_region(pf_addr)
 then sanitize(pf_addr)
 else do_page_fault(pf_addr)

Kernel PF
Handler

7. BoKASAN sanitizes if it's self-allocated object 
If not in BoKASAN's allocation area, follows normal page fault routine.

7

kmalloc
kfree

…

Fuzzer

Worker

Target PID List1

Sanitized Memory
Region

Shadow Memory
Region

Memory Allocation
Region

2

3

4

Fuzzing workflow of BoKASAN

5

Page Fault
Handler 6

BoKASAN

7

8

8. Report a bug if memory access is invalid.

Otherwise, single-step the instruction

7

Evaluation: Setup

• Dataset

• Tested with bugs found in

• SyzVegas ’21 Security

• Janus ’19 S&P

• 23 OOB & UAF Bugs

• Sanitizers

• KASAN (Native)

• KASAN (Fully Emulated with QEMU)

• Platform and Configuration

• Ubuntu 16.04

• Intel Xeon Gold 6148, 384GB RAM

• Ubuntu 20.04

• Intel i7-12700, 64GB of RAM

• Fuzzers

• Syzkaller

• commit #fdb2bb2c23ee7

Evaluation: Bug Detection

• BoKASAN detected a similar number of bugs to KASAN

• Janus dataset: 20 vs. 21

• SyzVegas dataset: 15 vs. 14

Evaluation: Performance Overhead

• 24h Fuzzing Experiment

• Executed Syscalls

• 81.3% more than KASAN(FE)

• 11.3% less than KASAN

• Covered Basic Blocks

• 12.0% more than KASAN(FE)

• 0.6% less than KASAN

• BoKASAN’s performance is

• Significantly better than emulated KASAN

• Almost similar to KASAN

Evaluation: Selective Sanitization

• Fuzzing with Selective Sanitization

• Executed 4.3x more syscall

• Covered 32.8% more basic blocks

• Found 8 more bugs

• Shows the effectiveness of selective
sanitization

• Binary-only fuzzing with kAFL

• kAFL’s kafl_vuln_test driver

• Target kernel

• Windows 10 21H2, Ubuntu 16.04

• The driver contains three bugs

• Two bugs can be found without KASAN (❶, ❷)

• One bug can only be found with KASAN (❸)

2

1

3

Evaluation: Binary-only Kernel Fuzzing

• Bug case ❶, ❷
• Bug is detected in all trials w/ and w/o BoKASAN

• Bug case ❸
• With BoKASAN

• Detected 20 times on both OSes

• Without BoKASAN

• Detected 3 times on Ubuntu

• No detection on Windows

• BoKASAN is applicable to binary-only kernels

3

Evaluation: Binary-only Kernel Fuzzing

Conclusion

• BoKASAN: first practical binary-only KASAN which can be used for COTS OS

• Reduces binary instrumentation overhead with selective sanitization

• BoKASAN is anticipated to aid future research in binary-only kernel fuzzing

Thank you!

1st Author: Mingi Cho (imgc@yonsei.ac.kr)

Presentator: Dohyeon An (overflow@yonsei.ac.kr)

Corr. Author: Taekyoung Kwon (taekyoung@yonsei.ac.kr)

https://github.com/seclab-yonsei/bokasan

mailto:imgc@yonsei.ac.kr
mailto:overflow@yonsei.ac.kr
mailto:taekyoung@yonsei.ac.kr
https://github.com/seclab-yonsei/bokasan

