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Kernel Bugs are Critical
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Kernel Address Sanitizer

• Dynamic memory error detector 

• Using source level instrumentation 

• KASAN detects non-crashing bugs 

• Via redzone-based detection


• Use-After-Free, Out-of-Bounds Access
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Binary-only Kernels?
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Challenge: KASAN + Binary OS

• COTS OS vulnerabilities are critical  

• Affect the most users


• Most COTS OS are binary-only 

• Like Windows, macOS


• KASAN needs OS source code 

• for source-level instrumentation


• Binary-only approach is needed for 
COTS OSKernel
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Way to binary-only: Static Instrumentation

FuzzerRewrited 
Kernel

System call

• Static instrumentation 

• Perform static instrumentation such as binary rewriting 


• Can achieve performance close to native execution 

• Difficult to ensure soundness
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Way to binary-only: Dynamic Instrumentation

Fuzzer

Emulator

Emulated 
Kernel
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• Dynamic Instrumentation 

• ❶ Emulating the kernel or ❷ Hooking a page fault handler 

• Easy to Implement

Native 
Kernel
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• High performance overhead 

• Full Emulation: ~85 times 


• Hook Page Fault Handler: ~644 times 



Triggered by

Bug Type Fuzzer Process Other

UAF 15 1

OOB 5 1

Total 20 2

New Observation: Most crashes occur in 
fuzzer processes
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Our Insight: Focus Solely on the target
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FuzzerNative 
Kernel

System call
Fuzzer-related 
Memory Access

BoKASAN
Register 

Fuzzer Process

• Page fault-based Selective Sanitization  

• Sanitize fuzzer-generated inputs only 

• Minimized page fault overhead


• Possible in all COTS OS via paging


• We introduce BoKASAN, the first binary-only KASAN

Basic Concept: Selective Sanitization



Typical Kernel Fuzzing Flow
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BoKASAN: Design Overview
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Fuzzing workflow of BoKASAN
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0. At boot time, BoKASAN hooks kernel memory functions and fault handlers



Fuzzing workflow of BoKASAN
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Fuzzer

Target PID List1

2. Worker registers its PID to BoKASAN
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3. Worker executes syscalls  
which request kernel memory allocation



kmalloc 
kfree 

…

Fuzzer

Worker

Target PID List1

Sanitized Memory 
Region

Shadow Memory 
Region

Memory Allocation 
Region

2

3

Fuzzing workflow of BoKASAN

Page Fault 
Handler

4. If PID is registered, memory is allocated in sanitized region 
without access permission. Otherwise, allocated normally.
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5. Execute syscall, which accesses memory in the sanitized region.
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BoKASAN
6. Page fault is triggered due to lack of access permission. 

 BoKASAN's fault handler initiates.



Fuzzing workflow of BoKASAN
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2 BoKASAN  
PF Handler

Sanitized Memory 
Region

  if is_bokasan_alloc_region(pf_addr) 
    then sanitize(pf_addr) 
  else do_page_fault(pf_addr) 

Kernel PF 
Handler

7. BoKASAN sanitizes if it's self-allocated object 
If not in BoKASAN's allocation area, follows normal page fault routine.
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8. Report a bug if memory access is invalid.

Otherwise, single-step the instruction
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Evaluation: Setup

• Dataset 

• Tested with bugs found in 


• SyzVegas ’21 Security


• Janus ’19 S&P


• 23 OOB & UAF Bugs


• Sanitizers 

• KASAN (Native)


• KASAN (Fully Emulated with QEMU)

• Platform and Configuration 

• Ubuntu 16.04


• Intel Xeon Gold 6148, 384GB RAM


• Ubuntu 20.04


• Intel i7-12700, 64GB of RAM


• Fuzzers 

• Syzkaller


• commit #fdb2bb2c23ee7



Evaluation: Bug Detection

• BoKASAN detected a similar number of bugs to KASAN


• Janus dataset: 20 vs. 21 

• SyzVegas dataset: 15 vs. 14



Evaluation: Performance Overhead

• 24h Fuzzing Experiment 

• Executed Syscalls 

• 81.3% more than KASAN(FE)


• 11.3% less than KASAN


• Covered Basic Blocks 

• 12.0% more than KASAN(FE)


• 0.6% less than KASAN


• BoKASAN’s performance is 


• Significantly better than emulated KASAN


• Almost similar to KASAN



Evaluation: Selective Sanitization

• Fuzzing with Selective Sanitization 

• Executed 4.3x more syscall


• Covered 32.8% more basic blocks


• Found 8 more bugs


• Shows the effectiveness of selective 
sanitization



• Binary-only fuzzing with kAFL 

• kAFL’s kafl_vuln_test driver


• Target kernel 

• Windows 10 21H2, Ubuntu 16.04


• The driver contains three bugs 

• Two bugs can be found without KASAN (❶, ❷)


• One bug can only be found with KASAN (❸)
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Evaluation: Binary-only Kernel Fuzzing



• Bug case ❶, ❷ 
• Bug is detected in all trials w/ and w/o BoKASAN


• Bug case ❸ 
• With BoKASAN


• Detected 20 times on both OSes


• Without BoKASAN


• Detected 3 times on Ubuntu


• No detection on Windows


• BoKASAN is applicable to binary-only kernels
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Evaluation: Binary-only Kernel Fuzzing



Conclusion

• BoKASAN: first practical binary-only KASAN which can be used for COTS OS


• Reduces binary instrumentation overhead with selective sanitization


• BoKASAN is anticipated to aid future research in binary-only kernel fuzzing
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