

01111011

Hash Gone Bad: Automated discovery of protocol attacks that exploit hash function weaknesses

Vincent Cheval[‡]

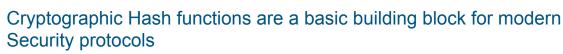
Cas Cremers*

Alexander Dax* Charlie Jacomme[‡] Lucca Hirschi[†]

Steve Kremer[†]

- * CISPA Helmholtz Center for Information Security
- [‡] INRIA Paris
- [†] LORIA, INRIA Nancy Grand-Est, Université de Lorraine

Cryptographic Hash functions are a basic building block for modern Security protocols


Cryptographic Hash functions are a basic building block for modern Security protocols

- Communication protocols
 - e.g., TLS, SSH, ...



- Communication protocols
 - e.g., TLS, SSH, ...
- Messengers
 - e.g., Signal, Telegram, ...

- Communication protocols
 - e.g., TLS, SSH, ...
- Messengers
 - e.g., Signal, Telegram, ...
- Cryptocurrencies
 - e.g., Bitcoin, Ethereum, ...

- Communication protocols
 - e.g., TLS, SSH, ...
- Messengers
 - e.g., Signal, Telegram, ...
- Cryptocurrencies
 - e.g., Bitcoin, Ethereum, ...

In security analysis hashes are often assumed to be "perfect"

- Communication protocols
 - e.g., TLS, SSH, ...
- Messengers
 - e.g., Signal, Telegram, ...
- Cryptocurrencies
 - e.g., Bitcoin, Ethereum, ...

In security analysis hashes are often assumed to be "perfect"

TLS 1.3

- Communication protocols
 - e.g., TLS, SSH, ...
- Messengers
 - e.g., Signal, Telegram, ...
- Cryptocurrencies
 - e.g., Bitcoin, Ethereum, ...

In security analysis hashes are often assumed to be "perfect"

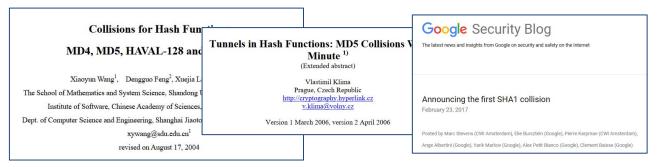
- meets all desired cryptographic properties
- both in the computational and symbolic setting

Collisions do exist!

Collisions do exist!

Collisions for Hash Functions MD4, MD5, HAVAL-128 and RIPEMD

Xiaoyun Wang¹, Dengguo Feng², Xuejia Lai³, Hongbo Yu¹ The School of Mathematics and System Science, Shandong University, Jinan250100, China¹ Institute of Software, Chinese Academy of Sciences, Beijing100080, China² Dept. of Computer Science and Engineering, Shanghai Jiaotong University, Shanghai, China³ xywang@sdu.edu.cn¹ revised on August 17, 2004



Collisions for Hash Fun MD4, MD5, HAVAL-128 and	Tunnels in Hash Functions: MD5 Collisions Within a Minute ¹⁾ (Extended abstract)
Xiaoyun Wang ¹ , Dengguo Feng ² , Xuejia L The School of Mathematics and System Science, Shandong U Institute of Software, Chinese Academy of Sciences, Dept. of Computer Science and Engineering, Shanghai Jiaoto xywang@sdu.edu.cn ¹ revised on August 17, 2004	Vlastimil Klima Prague, Czech Republic <u>http://cryptography.hyperlink.cz</u> <u>v.klima@volny.cz</u> Version 1 March 2006, version 2 April 2006

ollisions do exist!					Collisions for Hash Fun MD4, MD5, HAVAL-128 and								 Tunnels in Hash Functions: MD5 Collisions V Minute ¹⁾ (Extended abstract)							Google Security Blog The latest news and insights from Google on security and safety on the Internet									
			Xiaoyun Wang ¹ , Dengguo Feng ² , Xuejia The School of Mathematics and System Science, Shandong Institute of Software, Chinese Academy of Science						ong I	Prague, Czech Republic http://cryptography.hyperlink.cz								Announcing the first SHA1 collision February 23, 2017											
Lifetimes of popular cryptographic hashes (the rainbow chart) Function 1990 1991 1992 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2011 2012 2013 2014 2015 200																													
Function	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	
Snefru																													
MD2 (128-bit)[1]																													
MD4																													
MD5															[2]														
RIPEMD															[2]														
HAVAL-128[1]															[2]														
SHA-0																													
SHA-1																												[3]	
RIPEMD-160																													
SHA-2 family																		[4]											
SHA-3 (Keccak)																													
Key Didn't exist/n	ot pu	blic U	Inder p	beer re	eview	Cons	idered	strong	g <mark>Min</mark>	or wea	akness	Weal	kened	Broke	en <mark>Co</mark>	llision	found												

CC BY-SA: https://valerieaurora.org/hash.html

Length Extension (e.g., SHA-1, SHA-2)

- Not a traditional property for cryptographic hashes
- From H(x) an adversary can produce H(x||y) without knowing x
- Example: Breaking authentication in Flickr

flickr

Length Extension (e.g., SHA-1, SHA-2)

- Not a traditional property for cryptographic hashes
- From H(x) an adversary can produce H(x||y) without knowing x
- Example: Breaking authentication in Flickr

Transcript Collisions [BL16]

- MITM session hijacking
- Downgrading attacks
- ...

flickr

Length Extension (e.g., SHA-1, SHA-2)

- Not a traditional property for cryptographic hashes
- From H(x) an adversary can produce H(x||y) without knowing x
- Example: Breaking authentication in Flickr

Transcript Collisions [BL16]

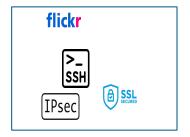
- MITM session hijacking
- Downgrading attacks
- ...

flickr

Can we find these flaws automatically in the protocol design?

Existing Symbolic Model of Cryptography

- Automated security protocol analysis tools
- Assumes "perfect" hash functions (ROM)


Existing Symbolic Model of Cryptography

- Automated security protocol analysis tools
- Assumes "perfect" hash functions (ROM)

Our Work: Find better Models

- Model all known hash weaknesses
- Goal: discover vulnerabilities in protocols automatically

Existing Symbolic Model of Cryptography

- Automated security protocol analysis tools
- Assumes "perfect" hash functions (ROM)

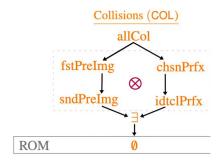
Our Work: Find better Models

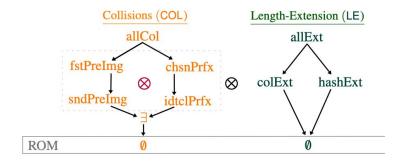
- Model all known hash weaknesses
- Goal: discover vulnerabilities in protocols automatically

A Technical Detail: Non-Classical Modelling

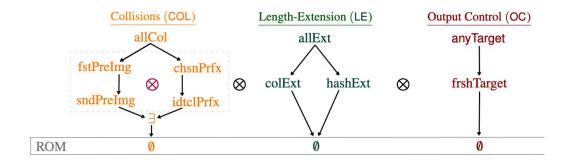
Underspecified functions approach [JCCS19]

- Tool explores all possible functions that meet the requirements
- Trace restrictions limit the possible functions (e.g., forbid collisions)

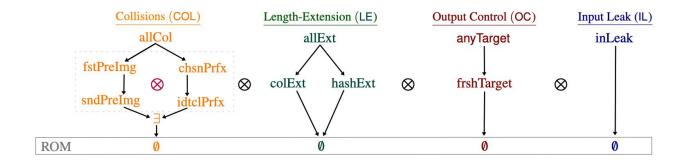



We classify our attack models into 4 dimensions

• Collisions

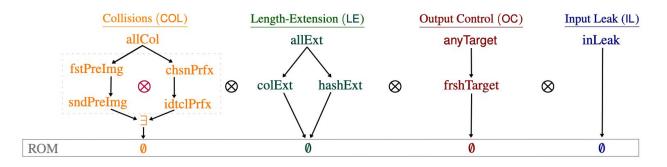


- Collisions
- Length Extensions



- Collisions
- Length Extensions
- Output Control

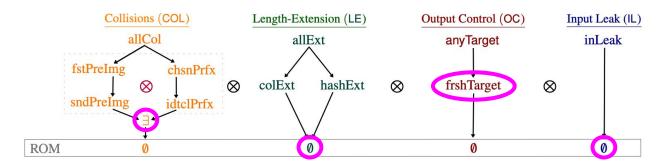
- Collisions
- Length Extensions
- Output Control
- Leakage of input



We classify our attack models into 4 dimensions

- Collisions
- Length Extensions
- Output Control
- Leakage of input

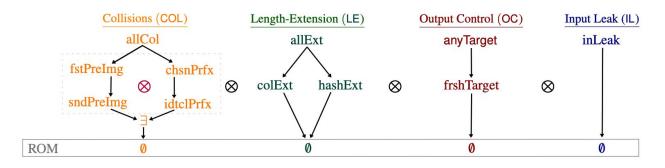
One attack model consists of the combination of all dimensions



We classify our attack models into 4 dimensions

- Collisions
- Length Extensions
- Output Control
- Leakage of input

One attack model consists of the combination of all dimensions

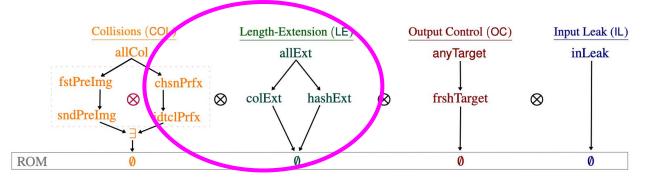


Finding a single collision between 2 random values

We classify our attack models into 4 dimensions

- Collisions
- Length Extensions
- Output Control
- Leakage of input

One attack model consists of the combination of all dimensions


We classify our attack models into 4 dimensions

- Collisions
- Length Extensions
- Output Control
- Leakage of input

One attack model consists of the combination of all dimensions

We need to extend the tools

Problems without associativity

Problems without associativity

E.g., a list of 3 is expressed as a nested tuple

• <<a,b>,c>

Problems without associativity

E.g., a list of 3 is expressed as a nested tuple

• <<a,b>,c>

Hashing a list of 3 could be either

• H(<<a,b>,c>) **≠** H(<a,<b,c>>)

Hashing lists and transcripts

Problems without associativity

E.g., a list of 3 is expressed as a nested tuple

• <<a,b>,c>

Hashing a list of 3 could be either

• H(<<a,b>,c>) **≠** H(<a,<b,c>>)

Hashing lists and transcripts

Problems without associativity

E.g., a list of 3 is expressed as a nested tuple

• <<a,b>,c>

Hashing a list of 3 could be either

• H(<<a,b>,c>) **≠** H(<a,<b,c>>)

Tamarin: New operator $|| \Rightarrow H(a||b||c)$

Challenge

• No algorithm to guarantee a finite set of unifiers

Solution

• connected to underlying new maude feature

Hashing lists and transcripts

Problems without associativity

E.g., a list of 3 is expressed as a nested tuple

• <<a,b>,c>

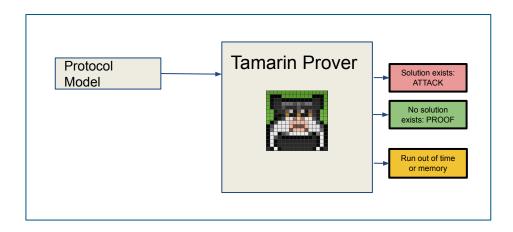
Hashing a list of 3 could be either

• H(<<a,b>,c>) **≠** H(<a,<b,c>>)

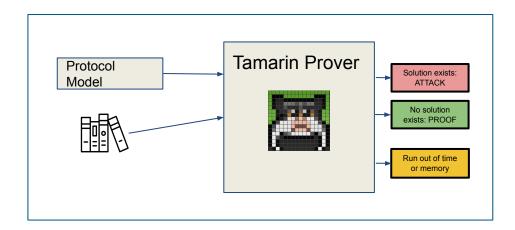
Tamarin: New operator $|| \Rightarrow H(a||b||c)$

Challenge

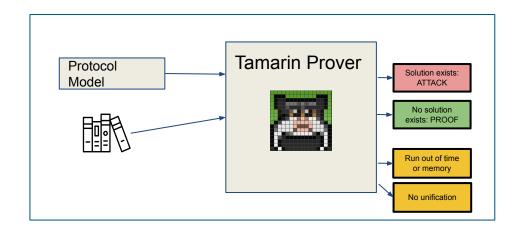
• No algorithm to guarantee a finite set of unifiers

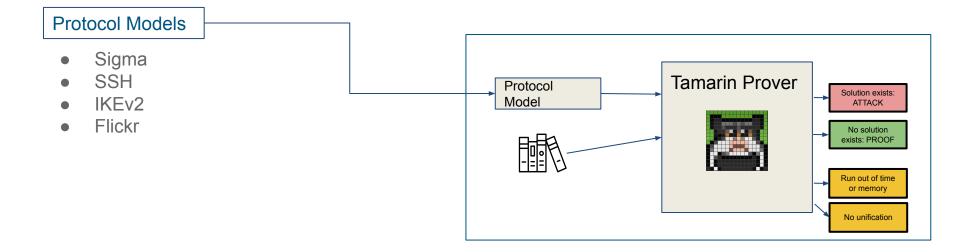

Solution

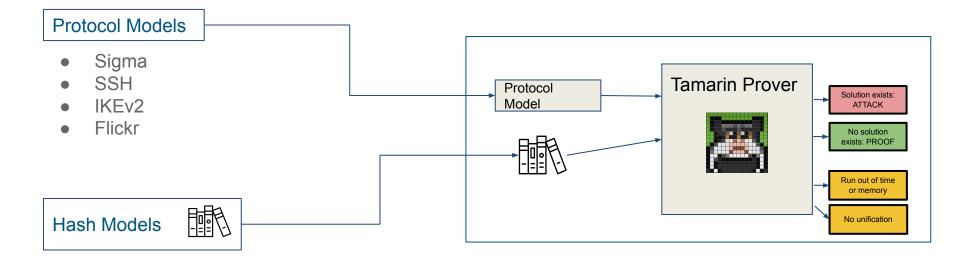
• connected to underlying new maude feature

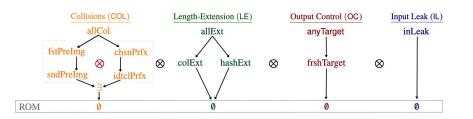

Proverif: Approximation

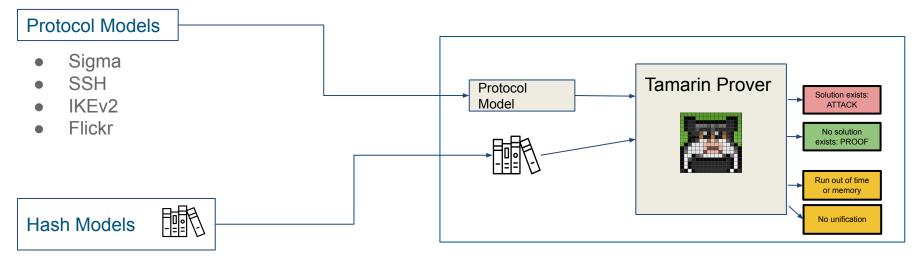
introduced recursive computation functions to define functions through general axiomatizations

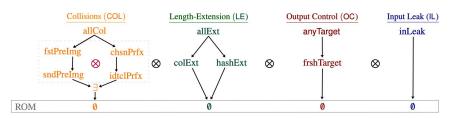


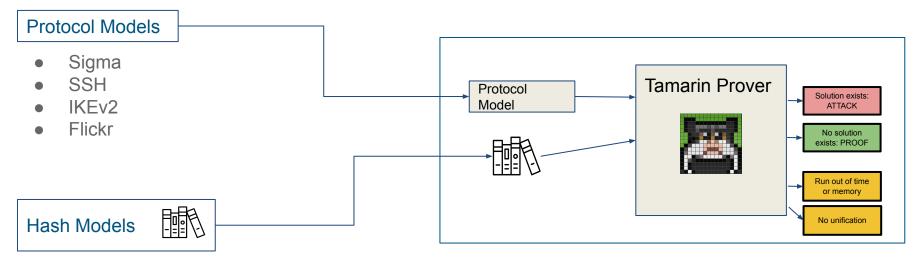


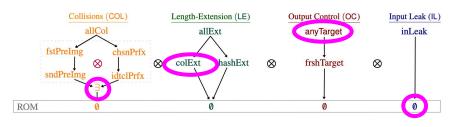


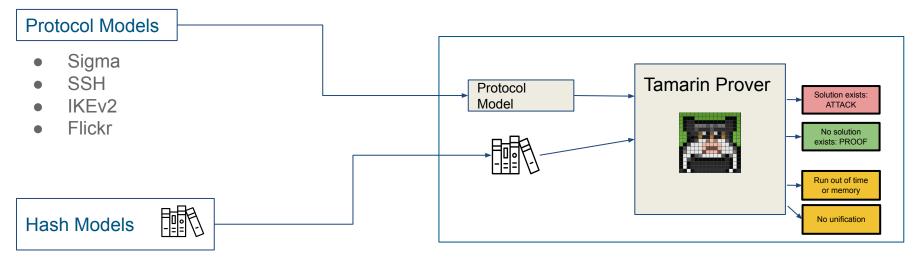


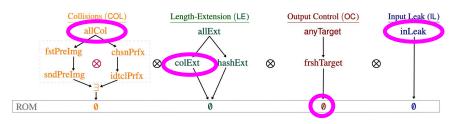


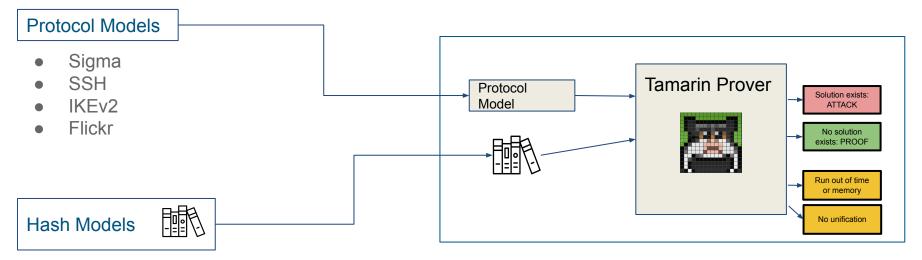


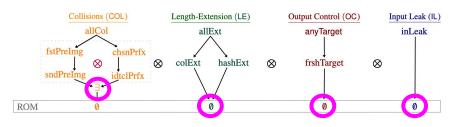


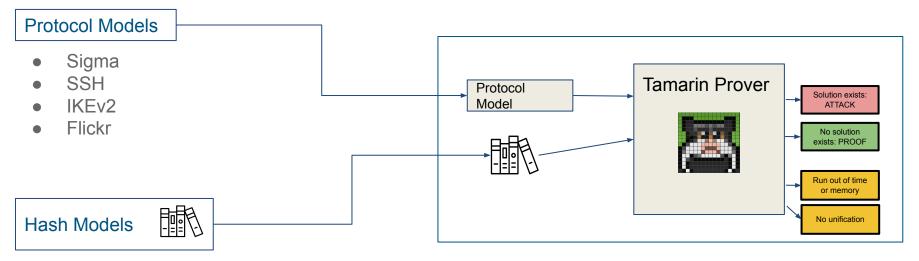


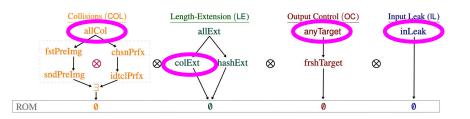


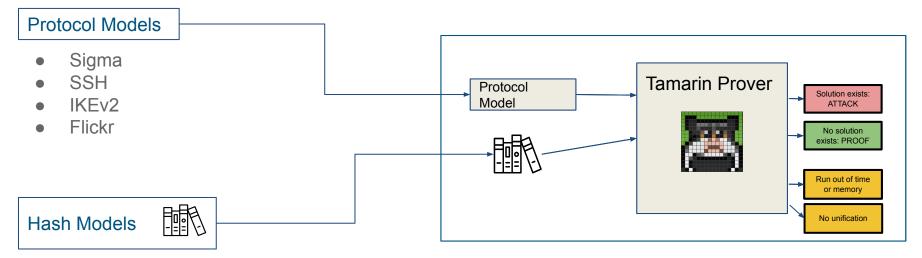


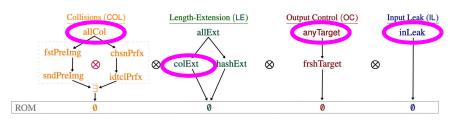












Systematic Analysis

Automatically construct all combinations

Implementations: https://github.com/charlie-j/symbolic-hash-models

Attacks automatically found

Protocol	Main attack requirements	New?	Broken Property	Time(s)
Sigma	chsnPrfx,colExt	×	Secrecy, Agreement	28
	chsnPrfx,colExt	X ~	Secrecy, Agreement	manual
	chsnPrfx	\checkmark	Secrecy, Agreement	55
SSH	idtclPrfx,colExt	×	Agreement	28
	sndPreImg,colExt	\checkmark	Agreement	41
IKEv2	idtclPrfx,colExt	×	Authentication	20
	∃ ,colExt	\checkmark	Agreement	9
Flickr	hashExt	×	Authentication	9

Attacks automatically found

Protocol	Main attack requirements	New?	Broken Property	Time(s)
Sigma	chsnPrfx,colExt	X	Secrecy, Agreement	28
	chsnPrfx,colExt	X ~	Secrecy, Agreement	manual
	chsnPrfx	1	Secrecy, Agreement	55
SSH	idtclPrfx,colExt	×	Agreement	28
	sndPreImg,colExt	\checkmark	Agreement	41
IKEv2	idtclPrfx,colExt	X	Authentication	20
	∃,colExt	\checkmark	Agreement	9
Flickr	hashExt	×	Authentication	9

Hash Gone Bad:

Automated discovery of protocol attacks that exploit hash function weaknesses

First automated methodology to find a large class of attacks

- Built new symbolic models for hash functions
- We extended both ProVerif and Tamarin
- Applied to several case studies, automatically finding attacks

Thanks for the Distinguished Paper Award!

Alexander Dax: <u>alexander.dax@cispa.de</u>

Artifact: <u>https://github.com/charlie-j/symbolic-hash-models</u>

Paper: https://www.usenix.org/conference/usenixsecurity23/presentation/cheval

- [BL16] Bhargavan, K., & Leurent, G. (2016, February). Transcript collision attacks: Breaking authentication in TLS, IKE, and SSH. In *Network and Distributed System Security Symposium--NDSS 2016*.
- [JCCS19] Jackson, D., Cremers, C., Cohn-Gordon, K., & Sasse, R. (2019, November). Seems legit: Automated analysis of subtle attacks on protocols that use signatures. In *Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security* (pp. 2165-2180).