
MTSan: A Feasible and Practical Memory
Sanitizer for Fuzzing COTS Binaries

Xingman Chen, Yinghao Shi, Zheyu Jiang, Yuan Li, Ruoyu Wang,
Haixin Duan, Haoyu Wang, Chao Zhang*

Fuzzing and Sanitizers

Target
Program

Crash

Mutated Input

Corpus

Test Case
Generator

2

Fuzzing and Sanitizers
Sanitizers

Target
Program

Crash

Mutated Input

Corpus

Test Case
Generator

3

Fuzzing and Sanitizers
Sanitizers

Target
Program

Crash

Mutated Input

Corpus

Test Case
Generator

4

Sanitizers and Memory Safety Violations

● Detects spatial and temporal violation

● E.g., AddressSanitizer (ASan)

○ Location-based (redzones)
■ Purify, Oscar, etc.

memory
access

memory
violation

mem_obj_A redzone mem_obj_B

5

Sanitizers and Memory Safety Violations

● Detects spatial and temporal violation

● E.g., AddressSanitizer (ASan)

○ Location-based (redzones)
■ Purify, Oscar, etc.

● E.g., PacMem

○ Identity-based (metadata)
■ SoftBound+CETS, Low-fat Pointer, etc

mem_obj_A mem_obj_B

ID addressmetadata table

ID metadata_A

bound state

memory violation

6

Sanitizers and Memory Safety Violations

● Detects spatial and temporal violation

● E.g., AddressSanitizer (ASan)

○ Location-based (redzones)
■ Purify, Oscar, etc.

● E.g., PacMem

○ Identity-based (metadata)
■ SoftBound+CETS, Low-fat Pointer, etc

7

Sanitizers and Memory Safety Violations

● Detects spatial and temporal violation

● E.g., AddressSanitizer (ASan)

○ Location-based (redzones)
■ Purify, Oscar, etc.

● E.g., PacMem

○ Identity-based (metadata)
■ SoftBound+CETS, Low-fat Pointer, etc

8

Binary Sanitizers

● Undangle [ISSTA’12]

● Dr. Memory [CGO’11]

● Memcheck [ATC‘05]

● QASan [SecDev’20]

● ASan-Retrowrite [S&P’20]

9

Limitations of Existing Binary Sanitizers

1. They only support heap objects, neglecting memory errors in stack and global
regions.

memory
layout

stack region global regionheap region

gb_ptr

g_o
b

j_a

g_o
b

j_b

g_o
b

j_c

h
_o

b
j_b

h
_o

b
j_a

h
_o

b
j_c

h
_o

b
j_d

s_o
b

j_a

s_saved

s_o
b

j_b

s_saved

s_o
b

j_c

hb_ptr gb_ptrhb_ptrsa_ptrsc_ptr

Source Code Available

10

Limitations of Existing Binary Sanitizers

1. They only support heap objects, neglecting memory errors in stack and global
regions.

memory
layout

stack region global regionheap region

???

h
_o

b
j_b

h
_o

b
j_a

h
_o

b
j_c

h
_o

b
j_d

hb_ptr ???hb_ptr??????

Binary Only

???

???

???

???

???

11

Limitations of Existing Binary Sanitizers

1. They only support heap objects, neglecting memory errors in stack and global
regions.

memory
layout

stack region global regionheap region

???

h
_o

b
j_b

h
_o

b
j_a

h
_o

b
j_c

h
_o

b
j_d

hb_ptr ???hb_ptr??????

???

???

???

???

???

Type info is lost during compilation -> boundary info is unavailable

Binary Only

12

Limitations of Existing Binary Sanitizers

2. Redzone-based approaches do not apply on binaries

memory
layout

stack region global regionheap region

g_o
b

j_a

g_o
b

j_b

g_o
b

j_c

h
_o

b
j_b

h
_o

b
j_a

h
_o

b
j_c

h
_o

b
j_d

s_o
b

j_a

s_saved

s_o
b

j_b

s_saved

s_o
b

j_c

Source Code Available (w/o redzone)

13

Limitations of Existing Binary Sanitizers

2. Redzone-based approaches do not apply on binaries

memory
layout

stack region global regionheap region

g_o
b

j_a

g_o
b

j_b

g_o
b

j_c

h
_o

b
j_b

h
_o

b
j_a

h
_o

b
j_c

h
_o

b
j_d

s_o
b

j_a

s_saved

s_o
b

j_b

s_saved

s_o
b

j_c

Source Code Available (w/redzone)

14

Limitations of Existing Binary Sanitizers

2. Redzone-based approaches do not apply on binaries

Binary Only (w/redzone)

memory
layout

stack region global regionheap region

h
_o

b
j_b

h
_o

b
j_a

h
_o

b
j_c

h
_o

b
j_d

???

???

???

???

???

15

Limitations of Existing Binary Sanitizers

2. Redzone-based approaches do not apply on binaries

Binary Only (w/redzone)

memory
layout

stack region global regionheap region

h
_o

b
j_b

h
_o

b
j_a

h
_o

b
j_c

h
_o

b
j_d

???

???

???

???

???

Cannot add redzones without changing memory layouts

16

Limitations of Existing Binary Sanitizers

3. High runtime and memory overhead

Binary
Sanitizer

Bug-finding
Techs

Object Coverage Runtime
Overhead*

Memory

Overhead*Heap Stack Global

Undangle
pointer-

tracking**
yes no no >10x >10x

Dr. Memory redzone yes no no >10x >10x

Memcheck redzone yes no no >10x 3-10x

QASan redzone yes no no >10x 3-10x

ASan-Retrowrite redzone yes no no 1-3x 3-10x

* Standalone execution, with no optimization applied.
** Use-after-free violation only.

17

Limitations of Existing Binary Sanitizers

3. High runtime and memory overhead

* Standalone execution, with no optimization applied.
** Use-after-free violation only.

High overhead reduces fuzzing efficiency and curtails their application

Binary
Sanitizer

Bug-finding
Techs

Object Coverage Runtime
Overhead*

Memory

Overhead*Heap Stack Global

Undangle
pointer-

tracking**
yes no no >10x >10x

Dr. Memory redzone yes no no >10x >10x

Memcheck redzone yes no no >10x 3-10x

QASan redzone yes no no >10x 3-10x

ASan-Retrowrite redzone yes no no 1-3x 3-10x

18

Motivating Example
CVE-2017-9047

stack region

canary
saved_r

other
vars

expr

list

canary
saved_r

xm
lV

al
id

at
e

El
em

en
tC

o
nt

en
t

other
vars

xm
lS

n
p

ri
nt

f
El

em
en

tC
o

nt
en

tlow

high

buf = &expr[0]

19

Motivating Example
CVE-2017-9047

stack region

canary
saved_r

other
vars

expr

list

canary
saved_r

xm
lV

al
id

at
e

El
em

en
tC

o
nt

en
t

other
vars

xm
lS

n
p

ri
nt

f
El

em
en

tC
o

nt
en

tlow

high

buf

20

Overflowing critical
data structures (stack
canary and the saved
return address)

Motivating Example
CVE-2017-9047

stack region

canary
saved_r

other
vars

expr

list

canary
saved_r

xm
lV

al
id

at
e

El
em

en
tC

o
nt

en
t

other
vars

xm
lS

n
p

ri
nt

f
El

em
en

tC
o

nt
en

tlow

high

buf

21

Overflowing into list

Challenges

1. How to recover memory objects in target binary?

a. pointers
b. boundary
c. lifetime

expr

call xmlValidate
ElementContent

ret

22

Challenges

1. How to recover memory objects in target binary?

a. pointers
b. boundary
c. lifetime

2. How to detect memory violations?

expr list

23

Our Initution

● Access pattern helps to infer data structures in memory
○ Rewards(NDSS’10), Howard(NDSS’11)

expr list

24

Our Initution

● Access pattern helps to infer data structures in memory
○ Rewards(NDSS’10), Howard(NDSS’11)

expr list

25

Our Initution

● Access pattern helps to infer data structures in memory
○ Rewards(NDSS’10), Howard(NDSS’11)

● Our insight

expr list

“Conflicts among inferred object boundaries —— caused by inferencing from
both benign and bug-triggering input —— are indicators for memory errors“

26

Our Initution

● Access pattern helps to infer data structures in memory
○ Rewards(NDSS’10), Howard(NDSS’11)

● Our insight
“Conflicts among inferred object boundaries —— caused by inferencing from
both benign and bug-triggering input —— are indicators for memory errors“

expr

list

ptr_expr

ptr_expr

ptr_expr

ptr_expr

27

Memory Tagging

● Add unique tags to both pointers and memory space
● Checked at every memory access by hardware and crashes the program if not match
● No change to memory layout is required

● 64-bit architectures only
● Every aligned 16 bytes of memory have a 4-bit tag
● ARM introduced Memory Tagging Extension in ARMv8.5-A

ptr1:

ptr2:

1001

0011

&objA + 0x10

&objB

objA

objB

1001

0011

0011

28

Our Approach: MTSan

Binary Analyzer

Binary Rewriter

patches runtime

instrumented
binary object

metadataFuzzer

non-critical
violation

critical
violation

Record,
Resume,

Regression

bug
reports

Pregressive
Object

Recovery

29

Our Approach: MTSan

Challenge 1. Recovering
memory objects during fuzzing

Binary Analyzer

Binary Rewriter

patches runtime

instrumented
binary object

metadataFuzzer

non-critical
violation

critical
violation

Record,
Resume,

Regression

bug
reports

Pregressive
Object

Recovery

30

Pregressive
Object

Recovery

Our Approach: MTSan

Challenge 1. Recovering
memory objects during fuzzing

Challenge 2. Detecting memory
violations during fuzzing

Binary Analyzer

Binary Rewriter

patches runtime

instrumented
binary object

metadataFuzzer

non-critical
violation

critical
violation

Record,
Resume,

Regression

bug
reports

31

Progressive Object Recovery

1. Identifying object pointers based on how the pointer is derived
a. for heap regions: hook memory allocators
b. for stack and global regions: values derived out of the stack pointer and global

addresses

1001

0011

stk_obj_1 + 3000

stk_obj_2 + 0

expr[5000]

list[5000]

Identified Pointers Stack Region

1001 stk_obj_1 + 0

Instructions

ADD X0, SP, #0x78

ADD X0, SP, #1,LSL#12

ADD X0, X0, #0x400

Recovered Boundary

1001 stk_obj_1 + 0

32

Progressive Object Recovery

2. Inferring object boundaries based on the use patterns of identified pointers
a. deref(addr, size) -> loading size bytes from addr
b. deref(A, 8) and deref(A+24, 8) -> boundary info [A, A+32)

1001

0011

stk_obj_1 + 3000

stk_obj_2 + 0

expr[5000]

list[5000]

Identified Pointers Stack Region

1001 stk_obj_1 + 0

Instructions

ADD X0, SP, #0x78

ADD X0, SP, #1,LSL#12

ADD X0, X0, #0x400

Recovered Boundary

1001 stk_obj_1 + 0

Update Metadata for
Stack/Global Objects

33

Progressive Object Recovery

3. Progressively refining object properties using unique executions during fuzzing
Conflicts among inferred object boundaries are indicators for memory errors

1001

0011

stk_obj_1 + 7000

stk_obj_2 + 0

expr[5000]

list[5000]

Identified Pointers Stack Region

1001 stk_obj_1 + 0

Instructions

ADD X0, SP, #0x78

ADD X0, SP, #1,LSL#12

ADD X0, X0, #0x400

Recovered Boundary

1001 stk_obj_1 + 0

0011 stk_obj_2 + 0

0011 stk_obj_1 + 4000

34

Adaptive Sanitization

● False alarms may stall fuzzing
○ E.g., compilers may emit multiple pointers to access the same object

● Sanitization policy
○ Non-critical violations: relies on checks of presumptive properties
○ Critical violations: only relies on check on deterministic properties

35

Adaptive Sanitization

● Record - Resume - Regression
○ Intuition: Given enough time, fuzzers will likely expose true positives and filter

away false positives.

* we bundles adjacent small objects into
one and call them compound objects

36

Fuzzing Efficiency

● MTSan (analog*) yields the highest number of executions, following
ASan-Retrowrite and MTSan (libMTE).

● MTSan (libMTE*) reported most bugs during fuzzing evaluation.

* We used instruction analogs and implemented libMTE for evaluation, please check our paper for details.
37

Fuzzing Efficiency - RRR

● RRR escalated seven
non-critical violations to
critical violations

● For more internal statistics,
please refer to our paper :)

Time-to-Discovery of vulnerabilities (in seconds) detected
duiring the fuzzing evaluation

38

Security Evaluation - Real-world Vulnerabilities

● MTSan is more effective than existing binary sanitizers.
● MTSan detected most stack and global violations with low FP rate.
● Performance optimizations and Compiler optimizations has limited effect.

39

● A feasible and practical hardware- assisted
memory sanitizer, MTSan, for binary fuzzing
on AArch64

○ A novel progressive object recovery
scheme to infer object properties in
binaries, including stack and global
objects

○ Using ARM MTE to sanitize based on
memory tagging

○ Low runtime overhead

Conclusion

40

Xingman Chen

Email: cxm16@mails.tsinghua.edu.cn

MTSan and libMTE will soon be open
sourced! We are working on
documentation and patenting.

