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Sanitizers and Memory Safety Violations

● Detects spatial and temporal violation

● E.g., AddressSanitizer (ASan)

○ Location-based (redzones)
■ Purify, Oscar, etc.

memory 
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memory 
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mem_obj_A redzone mem_obj_B
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Binary Sanitizers

● Undangle [ISSTA’12]

● Dr. Memory [CGO’11]

● Memcheck [ATC‘05]

● QASan [SecDev’20]

● ASan-Retrowrite [S&P’20]
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Limitations of Existing Binary Sanitizers 

1. They only support heap objects, neglecting memory errors in stack and global 
regions.
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Limitations of Existing Binary Sanitizers 

2. Redzone-based approaches do not apply on binaries
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Limitations of Existing Binary Sanitizers 

2. Redzone-based approaches do not apply on binaries

Binary Only (w/redzone)
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Limitations of Existing Binary Sanitizers 

2. Redzone-based approaches do not apply on binaries

Binary Only (w/redzone)
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Limitations of Existing Binary Sanitizers 

3. High runtime and memory overhead

Binary 
Sanitizer

Bug-finding 
Techs

Object Coverage Runtime 
Overhead*

Memory 

Overhead*Heap Stack Global

Undangle
pointer-

tracking**
yes no no >10x >10x

Dr. Memory redzone yes no no >10x >10x

Memcheck redzone yes no no >10x 3-10x

QASan redzone yes no no >10x 3-10x

ASan-Retrowrite redzone yes no no 1-3x 3-10x

* Standalone execution, with no optimization applied.
** Use-after-free violation only.
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Limitations of Existing Binary Sanitizers 

3. High runtime and memory overhead

* Standalone execution, with no optimization applied.
** Use-after-free violation only.

High overhead reduces fuzzing efficiency and curtails their application
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Motivating Example
CVE-2017-9047
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Challenges

1. How to recover memory objects in target binary?

a. pointers
b. boundary
c. lifetime

expr

call xmlValidate
ElementContent

ret
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1. How to recover memory objects in target binary?

a. pointers
b. boundary
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2. How to detect memory violations?

expr list
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Our Initution

● Access pattern helps to infer data structures in memory
○ Rewards(NDSS’10), Howard(NDSS’11)
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Memory Tagging

● Add unique tags to both pointers and memory space
● Checked at every memory access by hardware and crashes the program if not match
● No change to memory layout is required

● 64-bit architectures only
● Every aligned 16 bytes of memory have a 4-bit tag
● ARM introduced Memory Tagging Extension in ARMv8.5-A
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Our Approach: MTSan
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Pregressive
Object 

Recovery

Our Approach: MTSan

Challenge 1. Recovering 
memory objects during fuzzing

Challenge 2. Detecting memory 
violations during fuzzing
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Progressive Object Recovery 

1. Identifying object pointers based on how the pointer is derived
a. for heap regions: hook memory allocators
b. for stack and global regions: values derived out of the stack pointer and global 

addresses
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Recovered Boundary

1001 stk_obj_1 + 0
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Progressive Object Recovery 

2. Inferring object boundaries based on the use patterns of identified pointers
a. deref(addr, size) -> loading size bytes from addr
b. deref(A, 8) and deref(A+24, 8) -> boundary info [A, A+32)
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Update Metadata for 
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Progressive Object Recovery 

3. Progressively refining object properties using unique executions during fuzzing
Conflicts among inferred object boundaries are indicators for memory errors
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Adaptive Sanitization

● False alarms may stall fuzzing
○ E.g., compilers may emit multiple pointers to access the same object

● Sanitization policy 
○ Non-critical violations: relies on checks of presumptive properties
○ Critical violations: only relies on check on deterministic properties
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Adaptive Sanitization

● Record - Resume - Regression
○ Intuition: Given enough time, fuzzers will likely expose true positives and filter 

away false positives.

* we bundles adjacent small objects into 
one and call them compound objects
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Fuzzing Efficiency

● MTSan (analog*) yields the highest number of executions, following 
ASan-Retrowrite and MTSan (libMTE).

● MTSan (libMTE*) reported most bugs during fuzzing evaluation.

* We used instruction analogs and implemented libMTE for evaluation, please check our paper for details.
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Fuzzing Efficiency - RRR

● RRR escalated seven 
non-critical violations to 
critical violations

● For more internal statistics, 
please refer to our paper : )

Time-to-Discovery of vulnerabilities (in seconds) detected 
duiring the fuzzing evaluation
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Security Evaluation - Real-world Vulnerabilities

● MTSan is more effective than existing binary sanitizers.
● MTSan detected most stack and global violations with low FP rate.
● Performance optimizations and Compiler optimizations has limited effect.
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● A feasible and practical hardware- assisted 
memory sanitizer, MTSan, for binary fuzzing 
on AArch64

○ A novel progressive object recovery 
scheme to infer object properties in 
binaries, including stack and global 
objects

○ Using ARM MTE to sanitize based on 
memory tagging

○ Low runtime overhead

Conclusion
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Xingman Chen

Email: cxm16@mails.tsinghua.edu.cn

MTSan and libMTE will soon be open 
sourced! We are working on 
documentation and patenting.


