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Secure Collaborative Learning
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Multiple datasets lead to better accuracy

Privacy

Security

Corrupted datasets can ruin model, e.g.[PY17, WRJI19, RSARRJ20]
● Privacy technique blinds parties’ corrupted dataset

● secure computation [GMW87, Y82]

● malicious security [CLOS02, DPSZ12, WRK13] 



Attempt 1: range checks

Corrupted Input: 

- negative age (age < 0)
- too old age (age > 120)

Range checks

e.g. [BBBPWM18,CB17,AGJOP21]

3● Previously the only technique against malicious inputs 
● Enforce a range of values that each input can take



Are range checks enough?
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ages > 0 and ages < 120  ages > 0 and ages < 120 and μ ≈ 50

● Distribution testing + range checks >>> range checks!

● Introduce distribution testing (check properties of distribution)



Our work: HOLMES
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● Checks malicious input using distribution testing

● Perform distribution testing efficiently
○ 10-10000x faster than baselines

● Operates in highest level of security
○ Malicious security (e.g. n - 1 out of n parties)



Why distribution testing?
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● Pragmatic Clinical Trials
○ Compare distributions of datasets to detect discrepancies

● Group fairness
○ Biased data => biased trained model

● Data quality
○ Model of joint dataset > models of individual datasets



Beyond Distribution Testing
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● Distribution testing cannot detect input poisoning attacks
○ Input poisoning: small pertubations to inputs

● Input poisoning attacks are ineffective in certain cases
○ e.g., federated learning [SHKR21]



Roadmap
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● Use zero-knowledge (ZK) for fast distribution testing
○ Offload and verify computation of local dataset using ZK
○ Refer to the paper for more details

● Design efficient multidimensional tests
○ 10000x times faster than strawman!

● Perform experimental evaluation
○ HOLMES distribution testing vs. Naive



Histogram goodness-of-fit

≈
?
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Classical histogram checks use Pearson’s χ2-test

Intuitively, check if Σi(countdataset [i] - countpublic [i])
2  is small

What happens in multidimensional data?



Multidimensional goodness-of-fit

≈
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≈

Perform histogram check for each attribute: age & income



Multidimensional goodness-of-fit
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≈

Pearson’s χ2 test is prohibitively expensive
Number of histogram bins grows exponentially
Checking histograms for individual attributes does not suffice



Our solution: efficient sketching
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Johnson-Lindenstrauss Lemma [JL84,A03]:

For suitable random matrix A, ||x||2 ≈ ||Ax||2

Only works when comparing to a public distribution



Experimental Evaluation

Setup:

● QuickSilver for ZK, SCALE-MAMBA for MPC
● AWS c5.9xlarge instances, each containing 36 cores

○ Each instance is a different party
● Vary: 2 to 10 parties, input dataset size, real-world datasets 
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Highlights:

● 10 times speedup for classical distribution tests
● 10000 times speedup for multidimensional distribution tests



Single dimension histogram check w/ varying input size
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10x speedup with ZK at an input size of 200k entries

10x



Histogram check w/ varying number of attributes
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10000x speedup with JL at five attributes per input entry



Conclusion

● We present HOLMES, an efficient framework for distribution testing

● HOLMES is a lot more efficient than the baseline generic MPC

○ Combines MPC + ZK (10x speedup)

○ Sketching for multidimensional distribution tests (10000x speedup)

● E-print: https://eprint.iacr.org/2021/1517 
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https://eprint.iacr.org/2021/1517


Questions?
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