HOLMES:
Efficient Distribution Testing for Secure Collaborative Learning

Ian Chang Katerina Sotiraki Weikeng Chen Murat Kantarcioglu Raluca Ada Popa
UC Berkeley Yale University DZK Labs UT Dallas UC Berkeley

USENIX Security ‘23
Secure Collaborative Learning

Multiple datasets lead to **better accuracy**

Privacy
- secure computation [GMW87, Y82]

Security
- malicious security [CLOS02, DPSZ12, WRK13]

Corrupted datasets can ruin model, e.g. [PY17, WRJI19, RSARRJ20]
- Privacy technique blinds parties’ corrupted dataset
Attempt 1: range checks

Corrupted Input:
- negative age (age < 0)
- too old age (age > 120)

Range checks
e.g. [BBBPWM18,CB17,AGJOP21]

- Enforce a range of values that each input can take
- Previously the only technique against malicious inputs
Are range checks enough?

- Introduce distribution testing (check properties of distribution)

![Age Distribution Corrupted](image1)

ages > 0 and ages < 120

![Age Distribution Uncorrupted](image2)

ages > 0 and ages < 120 and $\mu \approx 50$

- Distribution testing + range checks >>> range checks!
Our work: HOLMES

- Checks malicious input using **distribution testing**
- Operates in highest level of security
 - Malicious security (e.g. n - 1 out of n parties)
- Perform distribution testing efficiently
 - 10-10000x faster than baselines
Why distribution testing?

- Pragmatic Clinical Trials
 - Compare distributions of datasets to detect discrepancies

- Group fairness
 - Biased data => biased trained model

- Data quality
 - Model of joint dataset > models of individual datasets
Beyond Distribution Testing

● Distribution testing **cannot** detect input poisoning attacks
 ○ Input poisoning: small perturbations to inputs

● Input poisoning attacks are ineffective in certain cases
 ○ e.g., federated learning [SHKR21]
Roadmap

- Use zero-knowledge (ZK) for fast distribution testing
 - Offload and verify computation of local dataset using ZK
 - Refer to the paper for more details

- Design efficient multidimensional tests
 - 10000x times faster than strawman!

- Perform experimental evaluation
 - HOLMES distribution testing vs. Naive
Histogram goodness-of-fit

Classical histogram checks use Pearson’s χ^2-test

Intuitively, check if $\sum_i (\text{count}_{\text{dataset}}[i] - \text{count}_{\text{public}}[i])^2$ is small

What happens in multidimensional data?
Multidimensional goodness-of-fit

Perform histogram check for each attribute: age & income
Multidimensional goodness-of-fit

Checking histograms for individual attributes does not suffice
Number of histogram bins grows exponentially
Pearson’s χ^2 test is prohibitively expensive
Our solution: efficient sketching

Johnson-Lindenstrauss Lemma [JL84,A03]:
For suitable random matrix A, $\|x\|_2 \approx \|Ax\|_2$

Only works when comparing to a public distribution
Experimental Evaluation

Setup:

- QuickSilver for ZK, SCALE-MAMBA for MPC
- AWS c5.9xlarge instances, each containing 36 cores
 - Each instance is a different party
- Vary: 2 to 10 parties, input dataset size, real-world datasets

Highlights:

- 10 times speedup for classical distribution tests
- 10000 times speedup for multidimensional distribution tests
Single dimension histogram check w/ varying input size

Graph:
- **X-axis:** Input size
- **Y-axis:** Time (s)
- **Legend:**
 - HOLMES (ZK + MPC)
 - Baseline (MPC)

Observation:
10x speedup with ZK at an input size of 200k entries
Histogram check w/ varying number of attributes

10000x speedup with JL at five attributes per input entry
Conclusion

- We present HOLMES, an efficient framework for distribution testing
- HOLMES is a lot more efficient than the baseline generic MPC
 - Combines MPC + ZK (10x speedup)
 - Sketching for multidimensional distribution tests (10000x speedup)
- E-print: https://eprint.iacr.org/2021/1517
Questions?