

RUHR-UNIVERSITÄT BOCHUM

SCARF – A Low-Latency Block Cipher for Secure Cache Randomization

Federico Canale¹, Tim Güneysu¹, Gregor Leander¹, Jan Philipp Thoma¹, Yosuke Todo², Rei Ueno³

- 1 Ruhr-University Bochum, Bochum, Germany
- 2 NTT Social Informatics Laboratories, Tokyo, Japan
- 3 Tohoku University, Sendai-shi, Japan

Jan Philipp Thoma, M. Sc.

Motivation

RUB

Caches

- Caches are **set-associative**
 - Table structure with ways and sets
 - Set is determined by part of the address
 - Way is determined by the replacement policy

Motivation

Prime + Probe Attack

- An attacker can observe cache accesses
 - 1. Fill a cache set
 - 2. Trigger victim access
 - 3. Re-Access eviction set
 - → Cache miss = access
- Prime + Probe

Motivation

RUB

Cache Randomization

- Cache randomization
 - Prevents efficient Prime + Probe attacks
 - Index is pseudorandomly generated from the address
 - Data is placed in one of the candidate entries
- What do we use as F_K ?

Secure Cache Randomization Function

Functional Requirements

- 1. Low Latency
- 2. Key Dependency
- 3. Invertibility (given the tag)
 - For write-back caches
- 4. We will focus on caches with 1024 sets
 - Map 48-bit tag + 10-bit index to 10-bit randomized index
 - Offset bits must be ignored!

Attacker Model

- The attacker aims to find colliding addresses
- The attacker can observe if two addresses
 collide
- The attacker never sees the output

RUB

Function Selection

How do we design F_K ?

- Idea 1: Use a low-latency block cipher! (e.g. PRINCE)
 - We need to cut the offset bits
 - Zero-pad 58-bit input
 - Sample index-bits from ciphertext
 - Use remainder as tag
- → 6 Bit storage overhead for the tag and comparison logic

RUB

Function Selection

How do we design F_K ?

- Idea 2: Create a 58 bit block cipher!
 - The attacker cannot see the output!
 - → Can we reduce the latency further?
- → Attacker model now involves partial ciphertext collisions
- → Wired attacker model makes latency optimization hard

RUB

Function Selection

How do we design F_K ?

- SCARF: Create a 10-bit tweakable block cipher!
 - 1024 sets is a common choice
 - Simple attacker model allows latency optimization!
- The attacker learns if

$$E_{T_1}(P_1) \stackrel{?}{=} E_{T_2}(P_2)$$

$$E_{T_2}^{-1}\left(E_{T_1}(P_1)\right) \stackrel{?}{=} P_2$$

Attacker's view

We can reduce the number of rounds by half!

RUB

Function Selection

How do we design F_K ?

- SCARF: Create a 10-bit tweakable block cipher!
 - 1024 sets is a common choice
 - Simple attacker model allows latency optimization!
- The attacker learns if

$$E_{T_1}(P_1) \stackrel{?}{=} E_{T_2}(P_2)$$

$$E_{T_2}^{-1}\left(E_{T_1}(P_1)\right) \stackrel{?}{=} P_2$$

Designer's view

We can reduce the number of rounds by half!

RUB

Design

- **SCARF** is a 10-bit tweakable block cipher with 48-bit tweak
- 7 + 1 rounds
 - Latency optimized combination of SPN and Feistel structure
- 240 Bit key

RUB

Design

• SCARF is a 10-bit tweakable block cipher with 48-bit twea

• 7 + 1 rounds

 Latency optimized combina of SPN and Feistel structure

• 240 Bit key

Hardware Implementation

Nangate OCLs

- Half the latency compared to low-latency block ciphers
- Half the area compared to low-latency block ciphers
- No additional overhead for larger tags
- Evaluated software performance using
 PARSEC benchmarks, results in the paper

Table 1. Synthesis results using Nangate OCLs

Technology	45 nm		15 nm	
	Latency [ns]	Area [GE]	Latency [ps]	Area [GE]
PRINCE	4.74	12,554	628.49	17,484
MANTIS6	4.73	13,129	630.07	17,641
QARMA5	4.40	13,915	563.62	18,455
SCARF	2.26	7,335	305.76	8,118

Questions?

Jan Philipp Thoma jan.thoma@rub.de

