Curve Trees: Practical and Transparent Zero-Knowledge Accumulators

USENIX Security 2023

Matteo Campanelli, Mathias Hall-Andersen, and Simon Holmgaard Kamp

Zero-Knowledge Accumulators

- Short digest of a public set S.
 - Update *S* in public.
 - Prove statement about $x \in S$ in zk.

Anonymous Payments

- "I own a coin in S"
 - Coin: value $\cdot G_1 + nullifier \cdot G_2$
 - Reveal *nullifier* when spending the coin.
- Spend a set of coins and add coins of equal value to S.
- Use rerandomized public keys as nullifiers and sign the transactions.

$$p + r \cdot H$$

Merkle Trees

Which hash function should you use?

- Merkle Tree with SHA256: ≈ 800.000 R1CS constraints.
- Merkle Tree with Pedersen: ≈ 45.000 R1CS constraints.
- Curve Tree: 4668 R1CS constraints.

Merkle Trees with Pedersen Hashing

- Hashing a field element is "native" to the proof.
- The digest is a group element.
 - Not native to the proof system.
 - Proceed recursively using bit decomposition.

Commit and Prove!

- Replace Pedersen Hashing with Pedersen Commitments
 - $v_1 \cdot G_1 + \ldots + v_n \cdot G_n$ becomes
- P gives the path of commitments to
 - Revealing the path to the leaf?
 - Figure out zero knowledge later.
- But the digest is still not a native input to the hash function?

$$v_1 \cdot G_1 + \ldots + v_n \cdot G_n + r \cdot H$$

o V.

Cycles of Elliptic Curves

- What if the digest is native to another hash function?
- Pick elliptic curves $\mathbb{E}_0(\mathbb{F}_{p_0})$ and $\mathbb{E}_1(\mathbb{F}_{p_1})$, where $|\mathbb{E}_0| = p_1$ and $|\mathbb{E}_1| = p_0$.
 - The scalar field of one is the base field of the other.
- Points on \mathbb{E}_i are native to the function hashing into \mathbb{E}_{1-i} .
- Commit to a point by committing to both coordinates.
 - A Curve Tree with arity ℓ needs 2ℓ generators.
 - Can we do better?

Removing the y-coordinates

- Standard trick: Compress a point to just the x-coordinate and a sign.
- Permissible points: Only points with positive sign are allowed in the tree.
- The sign function is often y > p/2 or lsb
 - Computing the sign requires $O(\lambda)$ field operations.
- Instead: pick a universal hash function from
 - $\mathscr{U}_{\alpha,\beta} \mapsto S(\alpha \cdot v + \beta)$ where $S(v) = 1 \iff v$ is a quadratic residue in \mathbb{F} .
 - Prove that $\mathscr{U}_{\alpha,\beta}(v) = 1$ with witness w where $w^2 = \alpha \cdot v + \beta$

$$\mathbf{y}(\mathbf{y})$$

om
$$\mathscr{U}_{\alpha,\beta}: \mathbb{F} \to \{0,1\}$$

Adding zero knowledge

- The path of commitments leaks the leaf.
- Rerandomize all the commitments!
- From the root onwards: "Select and Rerandomize"
 - Show that the next commitment on the path is a rerandomization of a child of the current commitment.

Select and Rerandomize

Rerandomized Curve Treenode

$$\mathcal{R}^{(\mathsf{single-level}^{\star},(_))} \coloneqq \begin{cases} (i, r, \delta, \\ (\mathbf{x}, \mathbf{y}) \end{pmatrix} : & \mathsf{r} \in \mathcal{P}_{\mathsf{other}(_)} \\ (\mathbf{x}, \mathbf{y}) \end{pmatrix} : & \mathsf{r} \in \mathcal{P}_{\mathsf{other}(_)} \\ \land \hat{C} = (\mathbf{x}_i, \mathbf{y}) + [\delta] \cdot H_{\mathsf{other}(_)} \end{cases}$$

Circuit costs

- Select x-coordinate: $\ell 1$ constraints.
- Decompress permissible point: 1 constraint.
- Point addition with native coordinates: ≈ 10 constraints.
- Fixed base scalar multiplication: ≈ 900 constraints.
 - Split algebraically incompatible elements into 3-bit windows.
 - Compute scalar multiplication with lookup tables an incomplete addition. lacksquare

$$\mathcal{R}^{(\mathsf{single-level}^{\star},(_))} \coloneqq \begin{cases} (i, r, \delta, \\ (\vec{x}, \vec{y}) \end{pmatrix} : & C = \langle [\vec{x}], \vec{G}_{(_)}^{\mathsf{x}} \rangle \\ + [r] \cdot H_{(_)} \\ \land (\vec{x}_i, \vec{y}) \in \mathcal{P}_{\mathsf{other}(_)} \\ \land \hat{C} = (\vec{x}_i, \vec{y}) + [\delta] \cdot H_{\mathsf{other}(_)} \end{cases}$$

Select and Rerandomize

Curves	(D,ℓ)	S	# Con-	Proof	Prove	Verify	Verify
			straints	(kb)	(s)	(ms)	batch (ms)
Pasta	(2, 1024)	2^{20}	3870	2.6	0.88	23.17	1.44
	(4, 256)	2^{32}	4668	2.9	1.71	39.63	2.35
	(4, 1024)	2^{40}	7740	2.9	1.74	40.41	2.73
$\mathrm{Secp}/\mathrm{Secq}$	(2, 1024)	2^{20}	3870	2.6	0.97	26.81	1.61
	(4, 256)	2^{32}	4668	2.9	1.89	47.39	2.64
	(4, 1024)	2^{40}	7740	2.9	1.92	48.40	3.02

Accumulator

Scheme

Curve Trees (Pasta) Curve Trees (Secp/Secq) Poseidon 4:1 Poseidon 8:1

# Con-	Prove	Verify	Verify
straints	(s)	(ms)	batch (ms)
3565	1.5	31	1.8
3565	1.7	37	2
4515	8.8	651	-
4180	8.5	825	-

2-2 Pour

	Anonymity	Transparent	Tx size	Proving	Verification	Amort. batch verification
	set size	\mathbf{setup}	(kb)	time (S)	time (ms)	time (ms)
Zcash Sapling	2^{32}	X	2.8	2.38	7	_
Zcash Orchard	2^{32}	\checkmark	7.6	1.77	15	_
Weksel	Any	X *	5.3	0.44	61.88	-
Lelantus	2^{10}	\checkmark	2.7	0.27^{+}	-	6.8†
	2^{14}	\checkmark	3.9	2.35^{+}	-	10.2^{+}
	2^{16}	\checkmark	5.6	4.8^{+}	-	$52\dagger$
Omniring	2^{10}	\checkmark	1	≈ 1.5 ‡	≈ 130 ‡	_
VCash (Pasta)	2^{20}	\checkmark	3.4	1.76	41.40	2.87
	2^{32}	\checkmark	4	3.43	78.40	4.98
	2^{40}	\checkmark	4	3.48	80.52	5.77
$\mathbb{V}Cash (Secp/Secq)$	2^{20}	\checkmark	3.4	1.95	48.27	3.15
		\checkmark	4	3.80	90.40	5.60
	2^{40}	\checkmark	4	3.86	91.97	6.32

Thank you! Questions?