Curve Trees: Practical and Transparent Zero-Knowledge Accumulators

Matteo Campanelli, Mathias Hall-Andersen, and Simon Holmgaard Kamp

Zero-Knowledge Accumulators

- Short digest of a public set S.
- Update S in public.
- Prove statement about $x \in S$ in zk.

Anonymous Payments

- "I own a coin in S "
- Coin: value $\cdot G_{1}+$ nullifier $\cdot G_{2}+r \cdot H$
- Reveal nullifier when spending the coin.
- Spend a set of coins and add coins of equal value to S.

- Use rerandomized public keys as nullifiers and sign the transactions.

Merkle Trees

Which hash function should you use?

- Merkle Tree with SHA256: ≈ 800.000 R1CS constraints.
- Merkle Tree with Pedersen: ≈ 45.000 R1CS constraints.
- Curve Tree: 4668 R1CS constraints.

Merkle Trees with Pedersen Hashing

- Hashing a field element is "native" to the proof.
- The digest is a group element.
- Not native to the proof system.
- Proceed recursively using bit decomposition.

Commit and Prove!

- Replace Pedersen Hashing with Pedersen Commitments
- $v_{1} \cdot G_{1}+\ldots+v_{n} \cdot G_{n}$ becomes $v_{1} \cdot G_{1}+\ldots+v_{n} \cdot G_{n}+r \cdot H$
- P gives the path of commitments to V.
- Revealing the path to the leaf!?
- Figure out zero knowledge later.
- But the digest is still not a native input to the hash function?

Cycles of Elliptic Curves

- What if the digest is native to another hash function?
- Pick elliptic curves $\mathbb{E}_{0}\left(\mathbb{F}_{p_{0}}\right)$ and $\mathbb{E}_{1}\left(\mathbb{F}_{p_{1}}\right)$, where $\left|\mathbb{E}_{0}\right|=p_{1}$ and $\left|\mathbb{E}_{1}\right|=p_{0}$.
- The scalar field of one is the base field of the other.
- Points on \mathbb{E}_{i} are native to the function hashing into \mathbb{E}_{1-i}.
- Commit to a point by committing to both coordinates.
- A Curve Tree with arity l needs 2ℓ generators.
- Can we do better?

Removing the y-coordinates

- Standard trick: Compress a point to just the x-coordinate and a sign.
- Permissible points: Only points with positive sign are allowed in the tree.
- The sign function is often $y>p / 2$ or $l s b(y)$
- Computing the sign requires $O(\lambda)$ field operations.
- Instead: pick a universal hash function from $\mathscr{U}_{\alpha, \beta}: \mathbb{F} \rightarrow\{0,1\}$
- $U_{\alpha, \beta} \mapsto S(\alpha \cdot v+\beta)$ where $S(v)=1 \Longleftrightarrow v$ is a quadratic residue in \mathbb{F}.
- Prove that $\mathscr{U}_{\alpha, \beta}(v)=1$ with witness w where $w^{2}=\alpha \cdot v+\beta$

Adding zero knowledge

- The path of commitments leaks the leaf.
- Rerandomize all the commitments!
- From the root onwards: "Select and Rerandomize"
- Show that the next commitment on the path is a rerandomization of a child of the current commitment.

Select and Rerandomize

Rerandomized Curve Treenode

$$
\mathcal{R}^{\left(\text {single-level }{ }^{\star},\left(_\right)\right)}:=\left\{\begin{array}{cc}
& C=\left\langle[\overrightarrow{\mathbb{x}}], \vec{G}_{(-)}^{\mathrm{x}}\right\rangle \\
\binom{i, r, \delta,}{\overrightarrow{\mathbb{x}}, \mathbb{y}}: & +[r] \cdot H_{(-)} \\
& \wedge\left(\mathbb{x}_{i}, \mathbb{y}\right) \in \mathcal{P}_{\text {other }\left(__{-}\right)} \\
& \wedge \hat{C}=\left(\mathbb{x}_{i}, \mathbb{y}\right)+[\delta] \cdot H_{\text {other(_) }}
\end{array}\right\}
$$

Circuit costs

- Select x-coordinate: $\ell-1$ constraints.
- Decompress permissible point: 1 constraint.
- Point addition with native coordinates: ≈ 10 constraints.
- Fixed base scalar multiplication: ≈ 900 constraints.
- Split algebraically incompatible elements into 3-bit windows.
- Compute scalar multiplication with lookup tables an incomplete addition.

Select and Rerandomize

Curves	(D, ℓ)	$\|S\|$	\# Con- straints	Proof (kb)	Prove (s)	Verify (ms)	Verify batch (ms)
			$2,1024)$	2^{20}	3870	2.6	0.88
23.17	1.44						
Pasta	$(4,256)$	2^{32}	4668	2.9	1.71	39.63	2.35
	$(4,1024)$	2^{40}	7740	2.9	1.74	40.41	2.73
Secp/Secq	$(2,1024)$	2^{20}	3870	2.6	0.97	26.81	1.61
	$(4,256)$	2^{32}	4668	2.9	1.89	47.39	2.64
	$(4,1024)$	2^{40}	7740	2.9	1.92	48.40	3.02

Accumulator

Scheme	\# Con- Prove Verify			Verify
	straints	(s)	(ms)	batch (ms)
Curve Trees (Pasta)	3565	1.5	31	1.8
Curve Trees (Secp/Secq)	3565	1.7	37	2
Poseidon 4:1	4515	8.8	651	-
Poseidon 8:1	4180	8.5	825	-

2-2 Pour

	Anonymity set size	Transpar setup	Tx size (kb)	Proving time (S)	Verification time (ms)	batch verification time (ms)
Zcash Sapling	2^{32}	X	2.8	2.38	7	-
Zcash Orchard	2^{32}	\checkmark	7.6	1.77	15	-
Veksel	Any	\boldsymbol{X} *	5.3	0.44	61.88	-
Lelantus	2^{10}	\checkmark	2.7	$0.27 \dagger$	-	$6.8 \dagger$
	2^{14}	\checkmark	3.9	$2.35 \dagger$	-	$10.2 \dagger$
	2^{16}	\checkmark	5.6	$4.8 \dagger$	-	$52 \dagger$
Omniring	2^{10}	\checkmark	1	$\approx 1.5 \ddagger$	$\approx 130 \ddagger$	-
VCash (Pasta)	2^{20}	\checkmark	3.4	1.76	41.40	2.87
	2^{32}	\checkmark	4	3.43	78.40	4.98
	2^{40}	\checkmark	4	3.48	80.52	5.77
VCash (Secp/Secq)	2^{20}	\checkmark	3.4	1.95	48.27	3.15
	2^{32}	\checkmark	4	3.80	90.40	5.60
	2^{40}	\checkmark	4	3.86	91.97	6.32

Thank you!

Questions?

