
Demystifying Pointer Authentication
on Apple M1

Zechao Cai1,2, Jiaxun Zhu1,2, Wenbo Shen1,2, , Yutian Yang1,2, Rui
Chang1,2, Yu Wang3, Jinku Li4, and Kui Ren1,2

1Zhejiang University, Hangzhou, China
2ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, China

3Hangzhou Cyberserval Co., Ltd., Hangzhou, China
4Xidian University, Xi’an, China

Outline
Ø Pointer Authentication

- What is Pointer Authentication (PAC)
- Current Research State of Apple PAC

Ø Our Motivation
- Lack of systematic analysis of Apple PAC Protection

Ø Our Contribution
- m1n1-based reverse engineering framework
- Disclosure of Apple’s hardware implementation
- Comprehensive analysis of PA-based XNU kernel protection

Ø Our Findings
- Apple’s PA Hardware
- PA-based XNU Kernel Protection
- Security analysis

Pointer Authentication

uARMv8.3 Specification

u1 control register

- SCTLR_EL1.EnIA/IB/DA/DB)

u5 key registers

- APIA/APIB/APDA/APDB/APGA

u2 kinds of instructions

- pac*/aut*

0xfffff00010c00ac4
Pointer

0x78d3c00010c00ac4
Signed Pointer pac instruction

1

Pointer Authentication

CPU

Register

Pointer A

Memory

Pointer A

Register

Pointer A

1. Function Call
2. Memory Access

Used for

Pointer Authentication

CPU

Register

Pointer A

Memory

Pointer A

Register

Pointer A

1. Function Call
2. Memory Access

Used for

Attacker with memory write primitive

Pointer Authentication

CPU

Register

Pointer A

Memory

Pointer B

Register

Pointer B

1. Function Call
2. Memory Access

Used for

Attacker with memory write primitive

Pointer Authentication

CPU

Memory

Register

Pointer A

Register

Pointer APAC

Register

Pointer APAC

Register

Pointer A

pacia x1, x2 autia x1, x2

Pointer APAC

Pointer Authentication Code

Pointer Authentication

CPU

Pointer B

Memory

RegisterRegister

Pointer APAC

Register

Pointer BPAC

Register

Pointer A

pacia x1, x2 autia x1, x2

PAC

Attacker with memory write primitive

Modify Pointer

Pointer BERR

Error Code

Pointer Authentication

CPU

Memory

RegisterRegister

Pointer APAC

Register

Pointer BPAC

Register

Pointer A

pacia x1, x2 autia x1, x2

Pointer BPAC

Attacker with memory write primitive

Modify Pointer and PAC

Pointer BERR

Error Code

Pointer Authentication

• Apple is the first one to implement and deploy PA hardware

- State-of-the-art mitigation against pointer corruption attack

- Since its debut, the number of public kernel exploits has decreased

Apple PAC
Since A12 (iPhone XS, 2018)

Apple SoC Security[1]

[1] Apple SoC Security. https://support.apple.com/guide/security/apple-soc-security-sec87716a080/web 2

Apple’s PA Protection

• Although there are a lot of research works on of Apple’s PA

- Most of them focus on PA-based software protection

- How does Apple implements Apple PA hardware remain unknown

Google Project Zero;
Team Pangu;
Keen Team

Google Project
Zero

Fugu14;
Ant Security Lab Fugu15

2020 2021 2022

Software
(Kernel PA Protection)

Hardware

2019

Google Project
Zero

3

Our Motivation

• Although there are a lot of research works on of Apple’s PA

- Most of them focus on PA-based software protection

- How does Apple implements Apple PA hardware remain unknown

Google Project Zero;
Team Pangu;
Keen Team

Google Project
Zero

Fugu14;
Ant Security Lab Fugu15

2020 2021 2022

Software
(Kernel PA Protection)

Hardware

2019

Google Project
Zero

3

Our Motivation

Brandon Azad :

Google Project Zero;
Team Pangu;
Keen Team

Google Project
Zero

Fugu14;
Ant Security Lab Fugu15

2020 2021 2022

Software
(Kernel PA Protection)

Hardware

2019 2023

Our Work

Our WorkGoogle Project
Zero

4

Our Motivation
• The hardware implementation remains unknown

• As a result, the PA software can not be analyzed systematically

• There is still no systematic analysis of Apple PA hardware and software

Ø We build a reverse engineering framework based on m1n1 (an open-sourced hypervisor)
to analyze PA hardware and software on Apple M1

Ø We reveal how Apple customizes the PA hardware to introduce undisclosed security
properties — Cross-domain (Cross-EL/Key/VM/Boot) attack mitigation

Ø We analyze the implementation of PA-based XNU kernel protection and identify four attack
surfaces. Apple acknowledged our findings publicly, fixed these issues in a security
update and assigned us a CVE.

5

Our Contribution

• Required Capabilities (RC)

RC1: Identify undisclosed PA-related Apple-specific system registers

RC2: Read/Write actual PA key values

RC3: Profile the undisclosed PA instruction behavior

RC4: Debug the XNU kernel dynamically

6

m1n1-based RE Framework

Ø RC1: Identify undisclosed PA-related Apple-specific system registers

Challenge: Apple introduced a lot of undisclosed system registers

Our solution: We identify registers based on

- Binary information

- System Register Redirection Hardware Feature

Bootstrap Process

Initial Register Set
(Most are _EL1 encoding)

Binary

Alias Registers
(_EL12/EL2 encoding)

Registers Set

Dynamic analysis Binary analysis Validate the results

Final Registers Set

String data,
Test functions…

7

m1n1-based RE Framework

Ø RC2: Read/Write the actual key value

Challenge: Apple implemented a hardware-based PAC key protection

Our techniques:

- For EL1 Key, Read/Write the key from EL2 exception level

- For EL2 Key, Read/Write the key before Apple PA is enabled

8

m1n1-based RE Framework

Ø RC3: Profile the undisclosed PA instruction behavior

Challenge: We need to analyze the complex interplays between registers and intructions

Our solution:

Set {Control Registers
Key Registers

Read/Write actual key

Run pac Instructions

RC1
Registers

RC2
Key R/W Ability

Step 1 Step 2 Step 3

9

m1n1-based RE Framework

Ø RC4: Debug the XNU kernel dynamically

Challenge: LLDB (provided by Apple) does not support active kernel debugging on Apple M1

Our solution: We implement active kernel debugging based m1n1 hypervisor

macOS

m1n1

EL1

EL2
Apple M1 Debugger

Serial Port

10

m1n1-based RE Framework

Our Findings

• Finding Overview

Controllability, PAC algorithm

Cross-domain Attack Mitigation

1

2 5-

11

Apple’s PA Hardware

• Controllability & PAC Algorithm

APCTL_EL1

- bit[0]: Enable Apple PA

- bit[2], bit[3]: Enable PA on user (bit[2]) or kernel space (bit[3])

- bit[1], bit[4]: Enable EXTRAKEY on user (bit[4]) or kernel space (bit[1])

1

PAC Algorithm is not QARMA

- (Modifier XOR KeyValue) is one of the inputs

12

Apple’s PA Hardware

• Cross-domain Attack

• Pointer substitution attack across different domains

Formalization of Cross-domain Attack in the paper 😄

Cross-VM: From VM to Host and Other VMs

Cross-Key: E.g., From APIA-signed to APIB-signed

Cross-Boot: From Boot Round 1 to Round 2

Cross-EL: From User space to Kernel space

13

Apple’s PA Hardware

• Cross-VM attack mitigation

Setting the higher 64-bit PAC Key will trigger a Key Transformation

VMDIV_EL2 is used for differentiate the Key Transformation between VM and Host2

14

Apple’s PA Hardware

• Cross-Key attack mitigation

Key Transformation introduces per-key-type salts to differentiate the results for different key types

VMDIV_EL2 per-key-type salts is one of the inputs for Key Transformation3

15

Apple’s PA Hardware

• Cross-Boot attack mitigation

EL2 Key Transformation introduces per-boot diversifier to differentiate the results for different CPU Boots4

16

Apple’s PA Hardware

• Cross-EL attack mitigation

Apple introduces an EXTRAKEY to differentiate the PAC computation between user and kernel space

EXTRAKEY APKeys (APIA/IB/DA/DB/GA) is the actual key value for PAC computation

Controlled by APCTL_EL1 (bit[1]: Kernel, bit[4]: User (XNU Kernel only enable bit[4]))

5

17

Apple’s PA Hardware

• Sign/Auth Interfaces Analysis

• We analyze all pac instructions in XNU kernel

• The result shows that XNU kernel uses

• 9 types of signing modifiers

• (5 types in official documentation)

• 6 policies for generating modifier constant

• (2 policies in official documentation)

18

PA-based Kernel Protection

• Key Management

• XNU kernel configures the keys

• Global: APIA/DA/GA

• Per-Process: APIB/DB, EXTRAKEY

Key APIA APDA APGA APIB APDB EXTRAKEY

Scope Global Global Global Per-Process Per-Process Per-Process

19

PA-based Kernel Protection

• Key Management

• PAC instruction scope

• pacia/da/ga: global in kernel space, per-process in user space

• pacib/db: per-process

• For non-arm64e process, the XNU kernel disable the user space PAC

PAC instructions pacia pacda pacga pacib pacdb

User (arm64e) Per-Process Per-Process Per-Process Per-Process Per-Process

User (Non-arm64e) - - Per-Process Per-Process -

Kernel Global Global Global Per-Process Per-Process

20

PA-based Kernel Protection

• We validate 4 attack surfaces (88 cases) and report them to Apple

① Incomplete Sensitive Data Identification

- Potential Enhancements

② Incomplete Interrupt Context Protection

- Fixed in a security update and acknowledged publicly

③ Signing Gadget

- Fixed and assigned a CVE (CVE-2023-32424)

④ Key Leakage

- Potential Enhancements

More detail about identification and validation in the paper 😄
21

Security Analysis

Thank you
Q&A

