
Place Your Locks Well:
Understanding and Detecting Lock Misuse Bugs

1

Yuandao Cai, Peisen Yao, Chengfeng Ye, Charles Zhang
The Hong Kong University of Science and Technology

• Massive codebases and high concurrency

4
7
8

11
44

50
50

61
85

0 20 40 60 80 100

Linux Kernel 2.2.0
Photoshop C.S. 6

Google Chrome
Firefox

Microsoft Office 2013
Windows Vista

Microsoft Visual Studio 2012
Facebook

Mac OS X "Tiger"

MLoC (Millions of Lines Of Code)

• Poor software quality costs the US economy $2.41 trillion annually

Increasingly Complex Modern Software

2

• Concurrency bugs are hard-to-avoid and extremely harmful!

• Synchronization primitives are in place to synchronize concurrent code
• preventing various concurrency bugs and vulnerabilities

• Existing works focus on concurrency bug detection (insufficient synchronization)
• data races[AI Thokair POPL’23] [chabbi et.al., PLDI’22]…
• concurrency memory corruption bugs [Yuan et.al., Security’23] [Cai et.al., PLDI’21]…
• concurrency typestate bugs [ASPLOS’11]…

• Our work focuses on the misuses of synchronization APIs themselves
• currently focusing on locks
• also causing serious reliability and security issues

Synchronization Primitives against Harmful Races

3

Research Goal and Contributions

1. Understanding the common misuses of locks
• through a CVE-ID-based empirical study

2. Designing techniques to detect the lock misuses

3. Evaluating and advancing the state-of-the-art bug-finding tools

4

An Empirical Study: Setup

• Locks are common synchronization primitives
• with explicit disciplines for initialization, use, and destruction.

• Study Question 1: What are the common lock misuses?
• Study Question 2: What are the common causes of those lock misuses?

• Study Dataset: 32 CVE IDs assigned between 2010-2021
• search keywords: e.g., mutex, lock
• manual validation for CVE ID description

CVE
IDs

Keyword
searching

Description
 analysis Lock Misuses

5

An Empirical Study: Finding I
1. Identifying five general locking discipline violations

• under both sequential and concurrent circumstances
• covering a single thread and multiple threads

2. Defining the bug patterns by revealing their characteristics

6

An Empirical Study: Five General Lock Misuses

(1) Missing lock releases (OpenSSL) (2) Double locking (Cen64) (3) Using uninitialized locks (Cherokee)

(4) Releasing unacquired locks (OpenSSL) (5) Cyclic lock acquisitions (MariaDB)

7

An Empirical Study: Finding II
• Wreaking severe havoc by triggering lock misuses

• denial-of-service with system hang (concurrent cyclic acquisitions, double locking)
• CVE-2013-4553, CVE-2014-8131, CVE-2019-14763, CVE-2021-41213,…

• memory exhaustion with memory leak (missing lock releases)
• CVE-2004-2650, CVE-2018-14660, CVE-2020-12658,…

• memory corruption; system crash (releasing unacquired locks, using uninitialized locks)
• CVE-2014-1453, CVE-2015-8767, CVE-2017-6353, CVE-2020-10573,…

• even privilege escalation and other unidentified issues
• CVE-2010-4210, CVE2014-9748, …

• Relating to other security bugs
• atomicity violations (CVE-2020-10573)
• use-after-free (CVE-2019-14034)
• double free (CVE-2017-6353) Releasing unacquired locks that

leads to atomicity violations (Axel)

8

Detecting the Five Lock Misuses with Lockpick
• Lock misuse formulation: characterizing lock misuses with a finite-state machine (FSM)

• Lock misuse detection: detecting lock misuses with several customized techniques

1. Model the states of lock objects using typestates
2. Capture the state transitions of lock objects with a new FSM
3. Capture the lock misuses by tracking the state transitions

1. Path-sensitively track the typestates of locks
2. Reason about the MHP relations of statements
3. Flag the lock misuses based on typestate violations

9

Implementation and Experiment Setup
• Lockpick is built upon the LLVM infrastructure and the Z3 SMT solver

• a soundy implementation to reach both high efficiency and precision
• unrolling loops twice, ignoring inline assembly, pointer arithmetic

• a value-flow-based pointer analysis
• on-demand flow-, context-sensitive pointer analysis

• path conditions are encoded as first-order logic formulae over bit-vectors

• Question 1: How effective and practical is Lockpick at uncovering lock misuses in
mature open-source software systems?

• Question 2: How does Lockpick perform compared to the state-of-the-art tools?

10

(1) Highlights: Effectiveness on Bug Finding
• Finding 203 developer-confirmed bugs in over 80 well-checked software programs

• 184 of them have been fixed (at the time of publication)
• finding various kinds of bugs
• hiding for an average of 7.4 years

• 16 CVE IDs have been assigned for multiple bugs with high security impacts
• CVE-2021-41141, CVE-2021-43429, CVE-2022-31621, CVE-2022-31624, CVE-2022-31623,

CVE-2022-31622, CVE-2022-30027, CVE-2022-37869, CVE-2022-37868, CVE-2022-38791,
CVE-2022-37874, CVE-2022-37875, CVE-2022-37876, CVE-2022-37871, CVE-2022-37872…

34

124

10
20

15 ①
②
③
④
⑤

The distributions of bug type

Missing lock releases
Double locking
Using uninitialized locks
Releasing unacquired locks
Cyclic Lock Acquisition

33

91
39

40 Y≤1

1<Y≤5

5<Y≤10

Y>10

The distributions of hidden time (Year)

11

(2) Highlights: Advancement over Previous Tools
• Baselines: SVF, L2D2 (built on Infer), Clang Static Analyzer
• Benchmarks: ten popular software programs with 35.8 MLoC
• Efficiency: being able to analyze big programs like Linux kernel in about five hours
• Precision: embracing better precision than other tools
• Recall: being able to discover 26 past CVE IDs in C/C++ programs (2010-2021)

• other tools cannot reach

12

Thank you for your listening!

Questions & Answers
More details can be found in our paper:

https://www.usenix.org/system/files/sec23fall-prepub-298_cai-yuandao.pdf
 Bug and CVE ID lists can be found:
https://drive.google.com/file/d/1HY7PydeDga-850ZOn3YPACnX7hRws8DG/view

13

https://www.usenix.org/system/files/sec23fall-prepub-298_cai-yuandao.pdf
https://drive.google.com/file/d/1HY7PydeDga-850ZOn3YPACnX7hRws8DG/view

