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Disclaimer

• This presentation contains discussions on harmful image content, 
such as sexually explicit, cyberbullying, and self-harm images that are 
highly offensive and might disturb the readers.
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Adversarial Unsafe Images

• Adversarial Images: Deceptive digital images that fool AI-based 
image recognition systems, causing misclassification, while appearing 
unchanged to human viewers.

• Unsafe Images: Potentially harmful or offensive content requiring 
effective detection and moderation to protect viewers.

Secure AI and Autonomy Lab



Detection of Adversarial Unsafe Images
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• Small 
perturbations can 
fool AI based 
detectors while 
preserving visual 
semantic content Detected as cyberbullying



Detection of Adversarial Unsafe Images

Secure AI and Autonomy Lab

+ 𝜖𝜖 ∗

• Small 
perturbations can 
fool AI based 
detectors while 
preserving visual 
semantic content Detected as cyberbullying



Detection of Adversarial Unsafe Images

Secure AI and Autonomy Lab

+ 𝜖𝜖 ∗ =

• Small 
perturbations can 
fool AI based 
detectors while 
preserving visual 
semantic content Detected as cyberbullying Not detected as cyberbullying



Adversarial Unsafe Images

• Adversarial perturbations 
compound the issue of 
unsafe images

• Frequent exposure to unsafe 
images can cause harm to 
image reviewers

• Moderator lawsuits for mental 
damages
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How Do Existing Methods Perform?

• With adversarial attacks 
the detection 
performance drops 
almost 40% on average 
across state-of-the-art 
API
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How Do Existing Methods Perform?
• With adversarial attacks 

the detection 
performance drops 
almost 40% on average 
across state-of-the-art 
API

Problem 1: Existing 
methods are insufficient 
against adversarial 
unsafe images
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Need a new 
method that 
can remove 
perturbations



Explainability Based Image Obfuscation
• Image obfuscation for 

protecting reviewers of 
sensitive images

• Grad-CAM, LIME, 
Integrated Gradients
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Need new 
obfuscation 
methods that 
are suitable for 
obfuscation

Problem 2: Existing 
explanation methods 
are unsuitable for 
image obfuscation



Motivation Overview
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Reconstruction to 
remove 
adversarial
perturbations

Problem 1: Existing methods are 
insufficient against adversarial 
unsafe images

Problem 2: Existing explanation 
methods are unsuitable for image 
obfuscation

Counterfactual 
super region 
attribution 
explainability
to obfuscate



Datasets

• Sexually Explicit [1]
• Cyberbullying [2]
• Self-Harm

• Self-harm (self-cutting, self-bruising, eating disorder, depicted or promoted self-
harm) (2,100 images)

• Non-self-harm (neutral social media images) (4,200 images)
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[1] Alex Kim. Nsfw data scraper. https://github.com/alex000kim/nsfw_data_scraper, 2021.
[2] Nishant Vishwamitra, Hongxin Hu, Feng Luo, and Long Cheng. Towards understanding and detecting cyberbullying in real-world images. In NDSS, 2021.



System Design Intuition

• Reconstruction of Adversarially Perturbed Image with Robust 
Classifier

• Image Reconstruction to remove the perturbations as an input transformation 
defense

• Robust classifier with adversarial training to detect unsafe content
• Obfuscating Unsafe Content with Counterfactual Explainability

• Explainability to detect the unsafe parts of the image and obfuscate them
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Approach Overview

• uGuard (unsafe image Guard)

• Image reconstruction module: Adaptive Clustering of Robust Semantic 
Representations (ACSR)

• Explainability-based image obfuscation module: Counterfactual Super Region 
Attributions (CSRA)
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uGuard Robust model

• Training a robust image 
detection model

• Adversarial attacks pushes image to 
tail of training distribution

• Standard adversarial training:
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uGuard Image Reconstruction
• Removing Adversarial 

Perturbation
• Reconstruct high-frequency 

component of image 
• Decompose images into high 

and low frequency 
components using the 
Tikhonov filter

• Convolutional Dictionary 
Learning to learn a dictionary 
from clean (unattacked) 
images to reconstruct the 
high frequency component of 
an image from the low 
frequency component
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uGuard Explainability Based Image 
Obfuscation
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• Targeted Image 
Obfuscation

• Counterfactual examples
• 2𝐾𝐾 different combination of 

regions to potentially mask
• Attribution maps point us to 

likely regions to sample from
Original 
Image

Attribution 
Map

Superpixel 
Segmentation

Average
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Scoring

Ideal 
Obfuscation 
Determined 
by CSRA



uGuard Explainability Based Image 
Obfuscation
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• Split an image into regions 
• Generate attribution map
• Average attribution scores 

within each segment
• Perform counterfactual 

analysis of top K scored 
segments to determine a 
combination of segments 
to obfuscate

Original 
Image

Attribution 
Map

Superpixel 
Segmentation

Average
Region 
Scoring

Ideal 
Obfuscation 
Determined 
by CSRA



uGuard System Architecture
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Evaluation: Public API vs uGuard

• Public API are unable 
to perform targeted 
obfuscation, and 
perform worse on 
adversarially 
perturbed unsafe 
images
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Additional Evaluations

• Adversarial robustness
• Robustness to seen attacks and some unseen attacks

• Explainability-based obfuscation
• More images made safer, with less obfuscation overall
• Preserves more important context than other techniques

• In-the-wild Experiment
• Human evaluations on sexually-explicit and self-harm images
• Over 90% of unsafe images made safer 
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Future Work

• Other unsafe image categories
• Investigating using targeted obfuscation methods in conjunction with 

Vision Language Models to assist in protecting social media image 
moderators
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Conclusions
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• We investigated adversarial unsafe image detection systems and 
explainability based obfuscation of unsafe images

• State-of-the-art systems that detect unsafe image content are 
vulnerable to adversarially attacked images

• We presented uGuard to detect and perform targeted obfuscation of 
adversarial unsafe images across three datasets

• Our evaluations showed that uGuard was able to sufficiently detect 
and obfuscate adversarially unsafe images



Q&A
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