Towards Targeted Obfuscation of Adversarial Unsafe Images using Reconstruction and Counterfactual Super Region Attribution Explainability

Authors: <u>Mazal Bethany</u>¹, Andrew Seong¹, Samuel Henrique Silva¹, Nicole Beebe², Nishant Vishwamitra², and Paul Rad¹

¹Secure AI and Autonomy Lab, ²Department of Information Systems and Cyber Security University of Texas at San Antonio

USENIX Security 2023

Secure AI and Autonomy Lab

Disclaimer

 This presentation contains discussions on harmful image content, such as sexually explicit, cyberbullying, and self-harm images that are highly offensive and might disturb the readers.

Adversarial Unsafe Images

NSFW

- Adversarial Images: Deceptive digital images that fool AI-based image recognition systems, causing misclassification, while appearing unchanged to human viewers.
- Unsafe Images: Potentially harmful or offensive content requiring effective detection and moderation to protect viewers.

Cyberbullying

Self-Harm

Secure AI and Autonomy Lab

Detection of Adversarial Unsafe Images

 Small perturbations can fool AI based detectors while preserving visual semantic content

Detected as cyberbullying

Detection of Adversarial Unsafe Images

 Small perturbations can fool AI based detectors while preserving visual semantic content

 $+\epsilon *$

Detected as cyberbullying

Detection of Adversarial Unsafe Images

 Small perturbations can fool AI based detectors while preserving visual semantic content

 $+\epsilon *$

Detected as cyberbullying

Not detected as cyberbullying

Adversarial Unsafe Images

- Adversarial perturbations compound the issue of unsafe images
- Frequent exposure to unsafe images can cause harm to image reviewers
- Moderator lawsuits for mental damages

Facebook content moderators in Kenya call the work 'torture.' Their lawsuit may ripple worldwide

How Do Existing Methods Perform?

 With adversarial attacks the detection performance drops almost 40% on average across state-of-the-art API

How Do Existing Methods Perform?

 With adversarial attacks the detection performance drops almost 40% on average across state-of-the-art API

Problem 1: Existing methods are insufficient against adversarial unsafe images

Need a new method that can remove perturbations

Explainability Based Image Obfuscation

- Image obfuscation for protecting reviewers of sensitive images
- Grad-CAM, LIME, **Integrated Gradients**

Problem 2: Existing explanation methods are unsuitable for image obfuscation

Original

Grad-CAM

LIME

Integrated Gradients

Need new obfuscation methods that are suitable for obfuscation

Motivation Overview

 Problem 1: Existing methods are insufficient against adversarial unsafe images
 Reconstruction to remove adversarial perturbations

 Problem 2: Existing explanation methods are unsuitable for image obfuscation
 Counterfactual super region attribution explainability to obfuscate

Datasets

- Sexually Explicit [1]
- Cyberbullying [2]
- Self-Harm
 - Self-harm (self-cutting, self-bruising, eating disorder, depicted or promoted selfharm) (2,100 images)
 - Non-self-harm (neutral social media images) (4,200 images)

- [1] Alex Kim. Nsfw data scraper. https://github.com/alex000kim/nsfw_data_scraper, 2021.
- [2] Nishant Vishwamitra, Hongxin Hu, Feng Luo, and Long Cheng. Towards understanding and detecting cyberbullying in real-world images. In NDSS, 2021.

System Design Intuition

- Reconstruction of Adversarially Perturbed Image with Robust Classifier
 - Image Reconstruction to remove the perturbations as an input transformation defense
 - Robust classifier with adversarial training to detect unsafe content
- Obfuscating Unsafe Content with Counterfactual Explainability
 - Explainability to detect the unsafe parts of the image and obfuscate them

Approach Overview

- uGuard (unsafe image Guard)
 - Image reconstruction module: Adaptive Clustering of Robust Semantic Representations (ACSR)
 - Explainability-based image obfuscation module: Counterfactual Super Region Attributions (CSRA)

uGuard Robust model

Training a robust image detection model

- Adversarial attacks pushes image to tail of training distribution
- Standard adversarial training:

$$\begin{split} \max_{\substack{\|\delta\|_{2} \leq \varepsilon}} l(f(x_{i} + \delta; \theta), y_{i}) \\ \min_{\theta} \mathbb{E}_{(x, y) \sim \mathcal{D}} \max_{\delta \in \Delta} l(f(x + \delta), y) + \lambda \rho(\theta) \end{split}$$

uGuard Image Reconstruction

Removing Adversarial Perturbation

- Reconstruct high-frequency component of image
- Decompose images into high and low frequency components using the Tikhonov filter
- Convolutional Dictionary Learning to learn a dictionary from clean (unattacked) images to reconstruct the high frequency component of an image from the low frequency component

$$x_{rec} = x_{low} + x_{high}^{rec}$$

$$\underset{x_{low}}{\operatorname{arg\,min}} \quad \frac{1}{2} \|x_{low} - x\|_{2}^{2} + \frac{\lambda}{2} \sum_{j} \|G_{j} x_{low}\|_{2}^{2}$$

$$x_{high}^{rec} \approx Dr = d_1 r_1 + \dots + d_M r_M$$

uGuard Explainability Based Image Obfuscation

Targeted Image Obfuscation

- Counterfactual examples
- 2^K different combination of regions to potentially mask
- Attribution maps point us to likely regions to sample from

Image

Map

Segmentation

Obfuscation Determined by CSRA

Region

Scoring

uGuard Explainability Based Image Obfuscation

- Split an image into regions
- Generate attribution map
- Average attribution scores within each segment
- Perform counterfactual analysis of top K scored segments to determine a combination of segments to obfuscate

by CSRA

uGuard System Architecture

Secure AI and Autonomy Lab

Evaluation: Public API vs uGuard

 Public API are unable to perform targeted obfuscation, and perform worse on adversarially perturbed unsafe images

	Public API	UGUARD		
	Adversarially Perturbed Accuracy %	Adversarially Perturbed Accuracy %	% Adversarially Perturbed Images Obf. to be Safer	Obfuscation %
Sexually Explicit	45.60	88.07	96.67	27.00
Cyberbullying	N/A	95.36	99.50	13.37
Self-Harm	N/A	90.07	94.67	14.00

Additional Evaluations

- Adversarial robustness
 - Robustness to seen attacks and some unseen attacks
- Explainability-based obfuscation
 - More images made safer, with less obfuscation overall
 - Preserves more important context than other techniques
- In-the-wild Experiment
 - Human evaluations on sexually-explicit and self-harm images
 - Over 90% of unsafe images made safer

Future Work

- Other unsafe image categories
- Investigating using targeted obfuscation methods in conjunction with Vision Language Models to assist in protecting social media image moderators

Conclusions

- We investigated adversarial unsafe image detection systems and explainability based obfuscation of unsafe images
- State-of-the-art systems that detect unsafe image content are vulnerable to adversarially attacked images
- We presented uGuard to detect and perform targeted obfuscation of adversarial unsafe images across three datasets
- Our evaluations showed that uGuard was able to sufficiently detect and obfuscate adversarially unsafe images

Q&A

Secure AI and Autonomy Lab