
TRust: A Compilation Framework for In-
process Isolation to Protect Safe Rust 

against Untrusted Code
Inyoung Bang, Martin Kayondo, Hyungon Moon, and 

Yunheung Paek

USENIX Security 2023



Rust, memory safe language replacing C/C++
• Rust was invented to help developers build highly safe systems

Ø Increasingly popular in industry
Ø Rust has been merged into the mainline linux (Oct, 2022)

• Focused on Memory Safety
Ø Mostly compile time checks

• Blazingly Fast
Ø Better than C/C++ optimized for safety

• Targeted at replacing C/C++, and possibly Python, Java in some aspects

1



Memory safety in Rust
• Memory Policies

Ø Rust compiler won’t allow variable temp to dereference the heap object buffer is pointing to
Ø Helps Rust compiler detect memory safety violations

• Guarantee memory safety with compile time and runtime checks
Ø Type Checks
Ø Bounds Checks

2

void* buffer = malloc(SIZE);
void* temp = buffer;

char* string = “string”;
*string = ‘S’;



Unchecked codes threatening memory safety
• Unsafe block

Ø Breakage of some Rust memory policies for expressiveness and performance issue
o Pointer arithmetic on raw pointer address

o Direct manipulation of metadata of Rust data structure

• External libraries written in foreign language
Ø Rust can be mixed with libraries written in other languages 

o Calling libc function in Rust

o Assembly codes for low level programming

o Source code is not always available and can be served as binary executables

3



fn main(){
let array = [1,2,3,4,5];
let secret_code = 12345;
unsafe{ 

let ptr = array.as_ptr().offset(10); 
std::ptr::write(ptr, 10); }

}

Example: vulnerabilities in unchecked codes

4

fn rust_fn(cb_fptr: fn(&mut i64)){
let fptr: /*Function pointer*/
unsafe { vuln_fn() }

fptr(); 
}

void vuln_fn() {
int64_t a[1] = {0};
int64_t array_index = 47; // value
set by corruptible source
int64_t array_value = get_attack();

// Arbitrary Write to Rust fptr
a[array_index] = array_value;

}

Overflow associated with unsafe Rust

Right: C code overwriting Rust function pointer

Left: Rust code calling C written function1)

Mergendahl, S., Burow, N., & Okhravi, H. Cross-language attacks. 
NDSS 2022



Mitigation by In-Process Isolation
• Rust program is composed of two distinct pieces of code:

Ø Safe blocks and unchecked code with potential exploits

• Safe Rust is protected by Rust’s memory policies

• Vulnerabilities in unchecked code can undermine protection in Safe Rust

• It is natural to solve this issue by in-process isolation

5



Existing In-process Isolation Mechanisms

• Concurrent work: PKRU-safe
Ø Uses dynamic profiling to isolate heap objects from user annotated external libraries

• So far, no fully automated technique exists

• So far, no technique protects safe Rust from both unsafe Rust and external libs
6



Goal of TRust
• Goal of TRust: A mechanism that protects safe Rust objects from both unsafe code 

and external libraries in a fully automated way
Ø Safe Rust objects: memory objects that are not “touched” by untrusted codes

7

"Safe" RustCode

Data

"Unsafe" Rust Foreign Language (e.g., C)

"Safe" Rust objects



Challenges to achieve the goal
• Unlike the unsafe blocks, external libraries cannot be isolated with SFI

Ø external libraries can be delivered in the form of executable binaries
Ø IPC or kernel intervention are expensive to use
Ø Intel MPK is perfect fit for this purpose
Ø Automatically instrument entry and exit gate before and after calling external functions 

• Automatic identification of unsafe objects and their allocation sites is difficult
Ø Rust’s encapsulation on heap allocation hinders identification of allocation sites
Ø Causes context-insensitive analysis to conclude all pointers share a few allocation sites

8



Overview of TRust
• Uses context-sensitive static analysis1) to identify unsafe objects “touched” by 

untrusted code in fully automated way

• Classifies an allocation site unsafe if it finds a flow from the site to a memory 
access instruction in untrusted code

• Applies SFI to isolate from unsafe code, and MPK to isolate from external libraries

9

Safe Code

Unsafe 
Code

External
Libraries

Safe Memory 
Region

Unsafe 
Memory 
Region

SFI

MPK

1) https://github.com/SVF-tools/SVF



Distinguish unsafe instructions and external calls
• TRust modifies Rust compiler 

• Collect unsafety information
Ø Mark all instructions used in unsafe blocks as unsafe code

• Collect external library invocations
Ø Mark all calls to foreign functions as external library call

10



Identify unsafe pointers and allocation sites
• Collects pointer information

Ø Find all pointers used in unsafe instructions
Ø Such pointers become unsafe pointers

• Performs points-to analysis and value-flow analysis
Ø Identify the allocation sites of unsafe pointers and track its uses.

11



Function cloning to improve precision
• Based on Value-flow Graph, finds all meaningful callsites contribute to allocation

Ø Clone the callee functions

• call sites are replaced with call to cloned functions

• Function cloning contributes to improved analysis precision
Ø distinguishing allocation sites and enabling context-sensitive identification of unsafe flows

12



How programs are transformed?
• Automatically identify unsafe objects that are touched by unsafe Rust

• Automatically identify allocation sites of unsafe objects

• Quarantine untrusted code using MPK and SFI

14Original Rust Program TRUST Protected Program

pub fn main(){
let buf = Vec::new();
let password = String::new();

unsafe{
//external library call
C_written_func();
//offset is out of bound
let ptr = buf.as_ptr().offset(NUM);
//out-of-bound read
}

}

pub fn main(){
let buf = Vec::new_unsafe();
let password = String::new();

unsafe{
entry_gate();
C_written_func();
exit_gate();
let ptr = buf.as_ptr().offset(NUM);
if(!in_unsafe_region(ptr))

raise_error;
}

}



Evaluation: performance
• TRust shows 9.6% overhead with jemalloc, 7.6% with mimalloc, while XRust

induces 26.4%
Ø Although only TRust protects safe objects on the stack and quarantines external libraries
Ø Thanks to address masking and selective SFI using unsafety and foreign function call metadata

15



Evaluation: memory
• TRust with Jemalloc shows 35% overhead, 13% with Mimalloc as unsafe allocator

Ø Due to initialization of size-segregated bins

• Xrust induces 7% overhead
Ø PTmalloc based

16



Conclusion
• Rust is gaining reputation for its memory safety while maintaining efficiency

• Unsafe code and external libraries in Rust may undermine whole program’s 
security

• TRust is the first attempt to automatically protect safe Rust from unsafe blocks and 
external libraries

• With an elaborated instrumentation using both SFI and MPK, induces lower 
performance overhead than previous techniques

17

Thank you!


