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Malware Analys(i|t)s
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● Malware Analysts are security experts of the Malware Analysis process

○ Examine malicious software for classification – Benign or Malicious?

○ An intrinsic part of their work is to read “Sandbox Reports”

● Problem: humans do not scale 🙈
● Machine Learning 🤖 to the rescue! 

○ Vast amount of research on ML-based malware classification

○ Humans teach machines which features they should evaluate

○ Problem: models cannot reach beyond the training data



Research Question
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What information guides human and machine decision-making when 

classifying samples (by looking at sandbox reports)?

… maybe we can learn something from each other! 

● Experts 🐒 vs. Novices 🐒
● Senior Experts 🐒 vs. Young Experts 🐒
● Machines 🤖 vs. Machines 🤖
● Humans 🐒 vs. Machines 🤖

Focus on Windows Malware – Portable Executable (PE) samples



Participants
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● 110 humans 🐒
○ 38 Experts

■ Renowned cybersecurity companies + Academic researchers

■ 7 of them with ≥9 years of experience

○ 72 Novices – attended at least a malware analysis course

■ Students + Beginner CTF players

●  2 state-of-the-art Machine Learning algorithms 🤖
○ Random Forests (500 trees)

○ Convolutional Neural Network (4-layered architecture)



We designed an web-based game: “Detect Me If You Can!” [DMIYC]

● Design elements

○ Leaderboard: rank players according to their performances

○ Points: numerically represent a player’s outcome

● Participants have to correctly classify 20 VirusTotal reports

○ Using as few features as possible

○ ⇒ Players have to “buy” each feature

Experiment Setup – Humans 🐒
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View of the results
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Statistically-significant differences (Welch’s t-test) between Experts/Novices
1. Time needed to complete the game ✅
2. Final Score ✅
3. Number of Right Answers ✅
4. … features? 🤔 



Feature Ranking by Humans
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Most used top 5 features



Experiment setup – Machines 🤖
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● Balanced dataset of 21,944 VirusTotal reports

● “Not Yet Another Classifier” ⇒ State-of-the-art encoding techniques

● 5-fold cross-validation to derive averaged AUC-ROC scores

○ Training 80% – Testing 20%

○ High classification accuracy 🎯: 0.9962 for RF and 0.9950 for CNN

● ... and finally they classified the DMIYC reports, but

○ Machines had the “all feature advantage”

○ VirusTotal features excluded



Humans 🐒 vs. 🤖 Machines
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● Human Experts: 16/20 (avg = median)

● Machines 

○ Random Forest: 17/20

○ Convolution Neural Network: 16/20

● Both ML algorithms misclassified the same two samples

○ They were not among the most difficult samples for humans

● In general, the misclassified samples by machines and humans are different



Humans 🐒 vs. 🤖 Machines  – Feature Ranking 
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We adopted SHAP as a model-agnostic explanation tool



Takeaways (1/2)
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● Experts and Novices base their decisions on the same set of features

○ But also Senior Experts

● During goodware classification

○ Experts used more features and Novices make the majority of mistakes

○ ⇒ We must teach to rule out any possible signs of bad intentions

● Humans and Machines agree on the importance of two features

○ “Network traffic” and a “valid signature”

● Machines rank top “resources”, Humans last ⇒ always take a look at it analysts!



Takeaways (2/2)

13

● Experts correctly classify samples by using less than 1/3 of the available features

○ With a preference for dynamic behaviour

● Machines prefer static features because dynamic ones are often missing

○ Research idea: semantically meaningful reconstruction of missing features 

● Impact on the human-computer interaction; “modern” sandboxes must show:

○ OSINT data (e.g., IPs and domains)

○ What are the most significant features that helped classify the sample

■ ⇒ The analyst can bridge the cognitive gap



– The End –
Thanks for your attention

Q&A
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Backup slides…



Data required for the registration
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Purchasable Features

Static

1. VT Labels

2. VT Submission History

3. Signature

4. Header Metadata

5. Sections

6. Imports

7. Resources

8. Strings
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Dynamic

1. Network

2. Processes

3. Registry

4. Mutexes

5. File System

6. Runtime DLLs



Scoring Mechanism

Players start with a blank report

● Adds new features to the report by choosing them from a pre-defined catalog of 15 features

● Until she has gained enough information to make a confident binary classification

● 20 samples → 20 rounds

● 20 potential points for each round

○ When she buys a new feature → potential_points -= 1

■ “Empty feature”  → potential_points -= 0

● If the sample is correctly classified → the player gets the remaining potential points

○ Otherwise zero 😞
● Final score = sum of all points obtained in each round * number of correct answers

○ ⇒  Highest possible score in DMIYC is 19*20*20 = 7600
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Dataset
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● Benchmark Dataset: 21,944 reports from VirusTotal

○ 50% (10,972) malware

■ [2018, 2020]

■ Detection >= 21 antivirus engines

■ No malware families were over-represented (AVClass2)

● Most frequent family had 125/10,972 occurrences (1.1%)

○ 50% (10,972) goodware

■ Clean Windows 10 machine

■ Installed all community-maintained Chocolatey software

■ Extracted all the executable files present on the hard disk

■ Filtered by detection < 3 (e.g., hacking/scanning tools)



🤖 Machine Learning Players – Classification Models
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● Random Forest (RF)

○ Greedy tree-branch split strategy to divide the feature space and locate the 

classification boundary

○ 500 trees can provide stable classification accuracy

● Convolution Neural Network (CNN)

○ Inclines to directly fit the classification boundary in high-dimensional feature space 

by minimizing the correntropy loss

○ We compress the categorical attributes into low-dimensional numerical embedding 

vectors, i.e., word2vec

○ Applying one convolution layer to the embedding vector 

○ Followed by 2 fully connected layers before filled into the softmax output 

 


