
Compact Storage for
Homomorphic Encryption

Adi Akavia & Neta Oren

University of Haifa

Boaz Sapir & Margarita Vald

Intuit, Israel Ltd.

Enterprise Architecture & Threats

Data Lake
 (storage, AES encrypted)

data producers data consumers

…

Vulnerability!

entire data-lake
as-weak-as weakest link…

Enhancing Privacy using HE

Data Lake
(storage, encrypted)

data producers data consumers

…

adversary sees only
encrypted data –

secrecy is provided!

with HE)

*Only authorized entities can decrypt

The HE approach is simple and appealing,

but is it ready for use in practice?

Key Complexity Bottlenecks in HE

 Time significant runtime overheads

 Storage 10-10,000 overhead over AES

But: Much recent progress!

Prior Works I: Store AES ciphertext, Transform to HE via homomorphic decryption
 [Naehrig etal’11]
 Implementations for AES [Gentry-Halevi-Smart’12, Doroz etal’14…]
 & for tailored ciphers [LowMC, Kreyvium, FLIP, RASTA,MASTA, HERA…]

  despite much progress, still too slow for retrieval at scale

Key Complexity Bottlenecks in HE

 Time significant runtime overheads

 Storage 10-10,000 overhead over AES

But: Much recent progress!

Prior Works II – Rate-1 HE [Gentry-Halevi’19, Brakerski etal’19]:
 via packing & compressing many data items in each ciphertext

 Issues:  Compressed ciphertexts only support additive homomorphism
  Uncompressing is slow
  Packing determined at storage => no “cherry picking” of data items to retrieve

Our Result: Compact Storage for HE

Our approach:

Store a secret share, at retrieval securely transform to HE (e.g., CKKS) in 2-server model

Achieving:  Rate-1 storage (no storage overhead)

  Data privacy

  Unrestricted homomorphism

  Fast runtime ~2X comp. storing & retrieving HE ciphertexts

  Dynamic control at retrieval of data cherry picking

 HE scheme & params

 packing profile

 Rate-1 shares

 Reconstruction requires only additive homomorphism over the reals

(no modular reduction!)

 Fast to reconstruct over data encrypted with CKKS

Prior perfect secret sharing – modular reduction required in Share & Rec

Slow when plaintext arithmetic is over reals as in CKKS

New Tool: Secret Sharing with Homomorphic
 Reconstruction over Reals

Our Compact Storage
Construction

Generic Compact Storage for HE

Upload 𝑠2

Computing Server

index

Helper Server PRF 𝑓𝑘Data producer

Homomorphic computation

 over 𝑥 HE

s1 ← 𝑓𝑘 index
 s2 ← Shr𝑠1 𝑥 𝑠2 HE

Download 𝑠2

s1 ← 𝑓𝑘 index
𝒙 HE ← Eval(Rec𝑠1 , 𝑠2 HE)

Storage of 𝑥 in location index Retrieval of 𝒙 𝐇𝐄 from location index

PRF 𝑓𝑘

Using PRFs and 2-out-2 Secret sharing with

random 1st share & linear homomorphic reconstruct

index

Empirical Evaluation

Our System

Instantiated with:

• Our secret sharing scheme for reals

• CKKS scheme in Microsoft SEAL v3.6.2

Deployed on:

• AWS EC2 with S3 storage and Google Cloud

Empirical
Evaluation:

Storage Size
&

Runtime

Our storage: 10 to 104 better than the baseline

Our runtime (amortized): 10s

Our cost of storage & retrieval:
outperforms the baseline

for ≤1016 retrievals/month with 25PB storage

*Baseline: Storing & retrieving HE ciphertexts

HE-Retrieve then Homomorphic Eval Decision-Tree

Our Storage: 10 to 104 better than baseline

 Runtime: 1.07 best baseline

 HE-retrieval only runtime: 9s ~1.57% of retrieve-then-eval runtime

Baseline w. opt.
 HE params &

packing profile

Summary

1) Compact storage with privacy preserving HE-retrieval in 2-server model

• Rate-1

• Fast runtime, nearly as fast as directly storing and retrieving HE ciphertexts

• Dynamic control, at retrieval time, of Retrieved data items,
 HE parameters,
 Packing profile,

2) Secret sharing w. additive homomorphic reconstruction over reals

3) Implementation using AWS EC2, S3 bucket and Google Cloud.

	Default Section
	Slide 1: Compact Storage for Homomorphic Encryption
	Slide 2: Enterprise Architecture & Threats
	Slide 3: Enhancing Privacy using HE
	Slide 4
	Slide 5: Key Complexity Bottlenecks in HE
	Slide 6: Key Complexity Bottlenecks in HE
	Slide 7: Our Result: Compact Storage for HE
	Slide 8
	Slide 9: Our Compact Storage Construction
	Slide 10: Generic Compact Storage for HE
	Slide 11: Empirical Evaluation
	Slide 12: Our System
	Slide 13: Empirical Evaluation: Storage Size & Runtime
	Slide 14
	Slide 15: Summary
	Slide 16

