
Not All Data are Created Equal:
Data and Pointer Prioritization for Scalable Protection Against Data-Oriented Attacks

Salman Ahmed1, Hans Liljestrand2, Hani Jamjoom1, Matthew Hicks3, N.
Asokan2, Danfeng (Daphne) Yao3

 1 IBM Research
2 University of Waterloo

3 Virginia Tech

Control-oriented attacks have become unreliable!
Control-oriented attacks

• Code injections
• Ret2libc
• ROP
• JOP
• COP
• COOP
• AOCR
• …

Thus, recently we have seen an uptick to data-oriented attacks (e.g., DOP, BOP, …)

Defenses
• Stack canaries
• ASLR
• Code diversification
• CPI
• Control-Flow Integrity (CFI)
• …
• And many latest work (MLTA, TyPM) to

make CFI sound and practical

2 of 19

Why is the shift?
• No violation of the normal flow of a program

(i.e., CFI won’t work)

• Expressiveness (DOP)

• Apparently, no practical defense mechanisms

3 of 19

Why are the existing defenses impractical?
Manipulation of data object/pointer is key attack strategy
for data-oriented attacks.

42% to 116%

19% - 26%

Due to huge number of data objects/pointers, on average ∼100x compared to
code pointers!

It takes high overhead for data integrity!
- Data-Flow Integrity (DFI),
- Data-Space Randomization (DSR) and
- memory tagging techniques

- ARM Pointer Authentication

4 of 19

Data Pointer Prioritization (DPP)

Goal: A framework that automatically identifies and prioritizes sensitive data objects/pointers.
- generic,
- adaptable, and
- capable of being integrated with existing defenses1.

1ARM pointer authentication, Intel MPX, Hardware-assisted memory tagging, etc.

Fact:
It takes high overhead for existing defenses to
prevent data-oriented attacks through data integrity!

Observation:

Not all data objects or their pointers
are vulnerable or equally sensitive.

Idea:
We can filter out the insensitive data/pointers and protect only the sensitive ones
through prioritization.

5 of 19

DPP Framework

Data-Flow
Analysis

ASan

PAuth

MPX

…

Softbound

CETS

Rule-based
heuristics

Vulnerability
driven dataset

External Input
Sources

Prioritization Sensitive data
objects/pointers

Existing Defenses

(network, filesystem, keyboard)

(taint identification & propagation)

(by applying rules)

6 of 19

Challenges
• How to obtain representative set of rules with comprehensive coverage?

§ Breaking down advanced exploits
• generic rules, common components increase coverage

• How to evaluate the accuracy of the rules?
§ Manually constructed ground truths from existing datasets

• Juliet Test Suite, Linux Flaw Project, and data-oriented exploits

7 of 19

DPP Rules

Rule # Category Short Description Example CVE
Rule 1 Control

alteration
Data objects/pointers in predicates may alter
program behavior

CVE-2006-5815

Rule 2 Control
alteration

Data pointers used in loops may alter program flow
or leak sensitive information

CVE-2006-5815

Rule 3 Proximity- based Data pointers that are near to data buffers CVE-2002-1496
Rule 4 Proximity- based Data objects or pointers used in vulnerable functions CVE-2021-31226
Rule 5 Erroneous Data pointers that have been cast to different types CVE-2018-6151
Rule 6 Erroneous Data objects that have out-of-bound access CVE-2021-21773
Rule 7 Unguarded Pointers that have unbounded allocations CVE-2020-11612

We extracted 7 rules in four categories.

8 of 19

Construction of Data-Flow Graph
- We use SVF tool1 to construct the data/value flow graph for a program.

- SVF constructs a static data/value flow graph (SVFG) on top of LLVM IR.

- We addressed three missing dependencies in SVFG.

1https://github.com/SVF-tools/SVF

9 of 19

Tainted Data Flow Graph

Tainted Static Value Flow Graph (SVFG)

10 of 19

Implementation of DPP Rules
• Each rule is an LLVM analysis pass (LLVM 12)
• Rule 1, 2, 4, and 5: alias analysis, loop analysis, data layout information

Rule 3
data pointers follow data buffers

Rule 6
Out-of-bound read/write

Checking all local variables
(alloca IR) in function

Checking all
global variables

Checking any buffers
followed by a pointer

Objects/pointers in Load,
Store, and Call nodes

Stack safety

Size and offset
approximation

11 of 19

Implementation of Rule 7
Dynamic memory

allocation SVF nodes

Allocation
node in CFG

Backward search in multiple paths for the
mapped ICFG node for cmp instructions

Path
explosion

Dealing
with loops

Relevant cmp
instructions

Solution:
Parameterized

Solution:
removed loops

Solution:
common ancestor

Details in
the paper

12 of 19

Evaluation
1) How capable and effective is DPP for prioritizing and

ranking security critical data?

2) How much performance improvement can DPP enable?

Utilized Address Sanitizer (ASan) for the evaluation

Setup
- baseline: no instrumentation
- asan: instrumented all data objects
- asan+dpp: instrumented only prioritized data objects

13 of 19

Security Evaluation
ASan with DPP can detect all the memory errors Linux Flaw Project and Juliet Test
Suite datasets the same as the default ASan can.

Linux Flaw Project

Juliet Test Suite

14 of 19

Prioritization Efficacy

More than 95% of data objects in a real-
world program do not need protection.

- 16 vulnerable data objects from 13 applications

- DPP identifies potentially sensitive data objects
by prioritizing top 3–4% data objects from real-
world applications.

30%

65%

5% Prioritized data objects

Non-prioritized data objects

Vulnerable data objects

15 of 19

Performance Evaluation

DPP improves performance by ∼1.6x
§ Using SPEC CPU 2017 integer benchmark

DPP reduces run-time overhead by
70% compared to ASan.
§ Using SPEC CPU 2017 integer benchmark

16 of 19

Limitations and Discussions

• Our current prototype is NOT a live defense.

• Our approach may miss sensitive objects if we overlook sensitive
variables (apart from pointers)

• A broader benchmark is needed to fully assess the effectiveness
of our rules.

17 of 19

Conclusion
• We proposed an automatic prioritization framework for identifying

and ranking sensitive memory-resident data to prevent data-
oriented attacks.

• Simple rule-based heuristics are effective.

• Our proposed prioritization scheme is new and different from the
conventional protection paradigm.

18 of 19

Not All Data are Created Equal:
Data and Pointer Prioritization for Scalable Protection Against Data-Oriented Attacks

Thank You!
Q & A

sahmed@ibm.com
@salmanyam
@salmanyam

Salman Ahmedhttps://github.com/salmanyam/DPP

19 of 19

mailto:sahmed@ibm.com

