

Smart Learning to Find Dumb Contracts

Tamer Abdelaziz and <u>Aquinas Hobor</u>. "<u>Smart Learning to Find Dumb Contracts</u>". The 32nd USENIX Security Symposium (<u>USENIX Security 23</u>).

Bugs in Cryptocurrency have been Expensive

Existing Smart Contract Vulnerability Detection Frameworks

Static Program Analysis

- + Impressive tools
 - Difficult to maintain and extend
 - Require expert rules
 - Mostly need access to the source code
 - Slow for large-scale analysis

Can deep learning help address these challenges?

DLVA: <u>Deep Learning Vulnerability Analyzer</u>

★ Detects 29 vulnerabilities in Ethereum smart contracts...
... without any predefined patterns or expert rules

- ★ Analyzes EVM bytecode (no source required)
- ★ High accuracy...
 - ... and low false positive rate
- ★ Almost always answers...
 - ... very quickly (10x-1,000x faster than competitors)
- ★ Extensively benchmarked
- ★ Available for immediate download and use

Reentrancy Attack Example

In TheDAO hack, the attacker stole over 3.6 million Ether!

Next: Designing DLVA

1. Motivation and Introduction

 \checkmark

- 2. Designing DLVA
- 3. Training DLVA
- 4. Benchmarking DLVA

Neural Network's Training Process

Architecture of DLVA

P: Neural networks learn from feature vectors to classify contracts
P: Use graph convolution NN to extract semantic structure

Preprocessing

Preprocessing

1. Dataset Collection

- 51,913,308 real-world contracts
- Remove redundant 99.3%
- Only 368,438 are unique contracts

2. Dataset Labeling

- <u>Slither</u> requires source code available
- Only ¹/₃ of unique contracts are labeled

3. CFG extraction

• CFG captures important semantics structures

Node to Vector (N2V)

Node to Vector (N2V)

 \mathcal{P} : Similar basic blocks/nodes \rightarrow Similar vectors in embedding space

Deep Averaging Network of the <u>Universal</u> <u>Sentence Encoder</u>

Smart Contract to Vector (SC2V)

Smart Contract to Vector (SC2V)

SC2V uses node summaries to make a vector summary of the entire CFG P: Use graph convolution NN to extract semantic structure from CFG

Sibling Detector (SD) and Core Classifier (CC)

Sibling Detector (SD) and Core Classifier (CC)

 \star SD tries to find a Euclidean-close neighbor to the

target contract from the training data

$$d(\mathbf{p},\mathbf{q}) = \sqrt{\sum_{i=1}^n (q_i-p_i)^2}$$

★ If no close neighbor, SD reports "**unknown**"

- ★ CC only called when SD reports unknown
- ★ CC uses feedforward neural net to label vulnerable contracts regardless of vector distance.

Next: Training DLVA

1. Motivation and Introduction

 \checkmark

 \checkmark

- 2. Designing DLVA
- 3. Training DLVA
- 4. Benchmarking DLVA

Training

★ N2V: 21.9 million basic blocks

★ P SC2V and CC trained together on 72 thousand contracts

Slither only labels source code, so we train the <u>bytecode</u> analyzer DLVA using a <u>source code</u> labeller as the oracle

Next: Benchmarking DLVA

- 1. Motivation and Introduction
- 2. Designing DLVA
- 3. Training DLVA
- 4. Benchmarking DLVA

 \checkmark

 \checkmark

Datasets used to benchmark DLVA

Dataset	No. of contracts	No. of vulnerabilities	Contract size	Ground Truth
EthereumSC _{large} [3]	22,634	29	Large	Slither
EthereumSC _{small} [4]	1,381	21	Small	Slither
Elysium _{benchmark} [2]	900 (57)	2	Small	Peer-reviewed
Reentrancy _{benchmark} [6]	473 (472)	1	Small	GP: Manual and GN: 2 analyzers
SolidiFI _{benchmark} [8]	444	4	Large	GP: Bug injection and GN: 5 analyzers

P: All datasets are disjoint from DLVA's training sets

All datasets are publicly available

Competitor summary

Analyzer	Input	Method	Vulnerabilities	Year	Citations
Oyente 0.2.7	source+ & binary-	static analysis	4	2017	1,996
Osiris	source+ & binary-	static analysis	5	2018	234
Mythril 0.21.20	source+ & binary-	static analysis	13	2019	127
SmartCheck 2.0	source	static analysis	43	2019	513
SoliAudit	source	machine learning & fuzzing	13	2019	76
eThor	binary	static analysis	1	2020	80
Slither 0.8.0	source	static analysis	74	2021	292
ConFuzzius	source	static analysis & fuzzing	10	2022	19
SAILFISH	source	static analysis	2	2022	24
DLVA	binary	deep learning	29	2023	NA

DLVA is highly sensitive

3rd best with 98.7%

DLVA is highly selective

2nd best with 0.6%

23

DLVA is highly accurate

Leads the pack with 99.7% accuracy

DLVA is 10x – 1000x faster than competitors

DLVA almost always answers... and very quickly

Concluding thoughts

Thank you for your attention!

- ★ Neural nets are surprisingly good at understanding smart contracts
- ★ Incorporating some semantic understanding (CFGs) improved results
- \star It is hard to pin down why something is flagged
- ★ Finding good datasets is tricky
- ★ Performance is essentially real-time
- \star DLVA is available as a practical tool for immediate use:

