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Abstract
Trusted execution environments (TEEs) isolate user-space

applications into secure enclaves without trusting the OS. Ex-
isting TEE memory models are rigid—they do not allow an
enclave to share memory with other enclaves. This lack of
essential functionality breaks compatibility with several con-
structs such as shared memory, pipes, and fast mutexes that
are frequently required in data intensive use-cases. In this
work, we present ELASTICLAVE, a new TEE memory model
which allows sharing. ELASTICLAVE strikes a balance be-
tween security and flexibility in managing access permissions.
Our implementation of ELASTICLAVE on RISC-V achieves
performance overheads of about 10% compared to native
(non-TEE) execution for data sharing workloads. In contrast,
a similarly secure implementation on a rigid TEE design in-
curs 1-2 orders of magnitude overheads for these workloads.
Thus, ELASTICLAVE enables cross-enclave data sharing with
much better performance.

1 Introduction

Isolation, commonly through the use of the process abstrac-
tion provided by an OS, is a cornerstone for security. It allows
us to isolate and limit software compromises to one fault
domain within an application and is the basis for applying
the design principle of privilege separation. In the last few
years, user-level enclaves have become available in commod-
ity CPUs that support TEEs. Conceptually, enclaves are in
sharp contrast to processes in that they do not assume a trusted
OS, promising a drastic reduction in the trusted computing
base (TCB) of a fault domain. The enclaved TEE design is of
fundamental importance to security because they offer a new
isolation primitive for software.

We revisit one of the key abstractions provided by enclaved
TEEs—their memory model. Several existing TEEs, includ-
ing SGX [7, 19, 21, 24, 27, 31, 39, 40], follow what we call
the spatial isolation model. In this model, the virtual memory
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of the enclave is statically divided into two types: public and
private memory regions. These types are fixed throughout the
lifetime of a region. When applied to enclaves, the spatial iso-
lation model is a simple but rigid model that is insufficient for
memory sharing. Its underlying principle breaks compatibility
with the most basic of data sharing patterns where the enclave
needs to compute privately on some data before making it
public or sharing it externally. If we want to support mem-
ory sharing between enclaves on spatially isolated memory,
we require additional trusted coordinator enclaves together
with cryptographic secure message passing channels. Without
these additional mechanisms, achieving secure shared mem-
ory is fraught with challenges in managing ownership and
access rights of the shared region, as attack vectors like per-
mission re-delegation [26], confused deputy [28], malicious
races [14], and TOCTOU attacks [25] have shown.

In this work, we revisit the spatial isolation memory model
adopted by modern TEEs. We propose a new memory model
called ELASTICLAVE which allows enclaves to share mem-
ory across enclaves and with the OS, with more flexible per-
missions than in spatial isolation. While allowing flexibility,
ELASTICLAVE does not make any simplistic security assump-
tions or degrade its security guarantees over the spatial isola-
tion model. We view enclaves as a fundamental abstraction
for partitioning applications in this work, and therefore as-
sume that enclaves do not trust each other and can become
compromised during their lifetime. ELASTICLAVE strikes a
balance between flexibility and safety. Each enclave in the par-
titioned application has its separate view of the memory per-
missions. These permission views are asymmetric and dynam-
ically adjustable, and can give rights of exclusive access to an
enclave. Thus, with ELASTICLAVE, enclaves can selectively
share memory while protecting it from faulty enclaves. Unlike
approaches to managing access rights and delegations in non-
TEE settings (e.g., in languages or OS design)—such as own-
ership transfer [38], static permission systems [6, 49], or fully
dynamic permission delegation [18, 62, 63]—ELASTICLAVE
simplifies security decision-making for coordinating enclaves
and TEE implementations.



It is possible to implement ELASTICLAVE on spatially iso-
lated TEEs, as mentioned earlier, by using trusted coordinators
and cryptographically secured public memory. The trusted
coordinator design, in fact, is already used in many existing
frameworks for Intel SGX [8, 12, 51, 52, 61]. However, in
real applications, the performance overheads due to this de-
sign can be prohibitively high compared to those in native
execution (in normal processes without enclaves). For ex-
ample, emerging enclave-based function-as-a-service (FaaS)
deployments that create frequent read-only copies of the en-
tire enclave code exhibit the worst-case performance of this
design [5]. In this paper, we show that ELASTICLAVE can
be implemented in next-generation TEEs with much better
performance, reducing the overheads to within about 10% of
the native, for data workloads that otherwise incur 1–2 orders
of magnitude overheads on a TEE that adopts the spatial iso-
lation model. ELASTICLAVE completely eliminates the need
for expensive data copy and encryption-decryption operations
which are necessary for security in the spatial model but not
in ELASTICLAVE.

We implement our design on RISC-V [9, 47] and evaluate
its performance and hardware complexity impact of ELAS-
TICLAVE using a cycle-accurate RTL simulator [32] on syn-
thetic as well as real-world workloads. The benchmarking
results confirm the following claims:

• TCB / Hardware Implementation Simplicity. The proto-
type implementation of ELASTICLAVE only includes a
privileged security monitor that spans 7,000 LoC.

• Data-independent Overheads on RISC-V. The perfor-
mance overheads are affected primarily by the number
of enclave-to-enclave context switches. In contrast to
spatial isolation, the overheads are independent of the
size of shared data in a region. Further, the increased
hardware register pressure due to ELASTICLAVE does
not affect the critical path delay, i.e., the latency of the
address translation, for all the synthesized RISC-V core
configurations tested.

Contributions. This paper proposes a new memory model for
enclaved TEEs called ELASTICLAVE. We offer a prototype
implementation on RISC-V and show that ELASTICLAVE
results in significantly better performance than the spatial
isolation model with a modest hardware complexity impact.

2 Problem

TEEs provide the abstraction of enclaves to isolate compo-
nents of an application which run with user-level privileges.
We want to design an efficient memory model for TEEs that
support memory sharing between enclaves. The TEE imple-
mentation is trusted and assumed to be bug-free. In our setup,
a security-sensitive application is partitioned into multiple

components. Each component runs in a separate enclave cre-
ated by the TEE, which serves as a basic isolation primitive.
We assume that enclaves are mutually distrusting, since an
adversary may compromise them during their execution, e.g.,
due to software exploits. This assumption is of fundamental
importance, as it captures the essence of why an application
is partitioned to begin with.

Most TEEs available on commodity processors follow a
memory model which we call the spatial isolation model [16,
19, 19, 21, 35, 40, 50, 57]. In this model, each enclave has two
different types of non-overlapping virtual memory regions:
(a) Private memory is exclusive to the enclave itself and inac-
cessible to the OS and all the other enclaves running on the
system; (b) public memory is fully accessible to the enclave
and the untrusted OS, which may share it with other enclaves.

The spatial isolation model embodies the principle of divid-
ing trust in an all-or-none manner [52]. For each enclave, any
entity is fully trusted to access the public memory, whereas
the private memory is accessible only to the enclave itself.
This principle is in sharp contrast to any form of memory shar-
ing where an enclave needs to exchange data with the outside
world, including with other enclaves. Although shared mem-
ory is not directly supported in the spatial isolation model,
it can be emulated with a secure communication channel
over untrusted memory. This style of emulation is commonly
adopted in existing frameworks, which for example, work
on Intel SGX [8, 52, 61]. This design requires multiple data
copies and encryption-decryption operations (see Figure 3)
to secure each enclave against attacks from the OS and other
enclaves. Table 1 summarizes the overheads for three text-
book data patterns and shows that spatial isolation can cause
1–2 orders of magnitude performance slowdown. Section 3.2
explains why these performance overheads are fundamental
to spatial isolation.

2.1 Security Challenges in Memory Sharing
We discuss the potential design choices to enable secure
memory sharing for enclaves. As an example, we consider
a client-server setup where a frontend client enclave uses
an in-memory key-value store (e.g., Memcached [41]) as a
backend server. The server enclave e1 owns the region r and
wants to share it with the client enclave e2. This way, each
enclave can read the data written by the other, perform private
computation on it, and write back the result to the shared
memory. Concretely, the expected sequence of operations on
r is: e1 writes, e2 reads, e2 writes, and then e1 reads. Consider
the following threat: After sharing the region, e1 and e2 can
become compromised at any point during the operations. We
refer to such compromised enclaves as faulty and assume that
they can behave arbitrarily.
Option 1: Static Permissions. The simplest design is to allow
both enclaves to simultaneously access the region. Before
execution, the enclaves are statically granted the maximum
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Figure 1: The striped boxes are regions of interest for sharing purposes. The labels around the striped boxes denote the the
permissions of the corresponding enclaves. The thunderbolts indicate when an enclave become faulty. The underlined permission
labels denote misuse. Figure 2: Producer-consumer pattern implemented with a trusted coordinator on spatial ShMem baseline.
The double-lined box denotes the trusted coordinator enclave. The striped boxes represent unencrypted data.

required permissions for the region. This allows the enclaves
to make their security decisions based on the static permission
view before they start sharing. In our example, both e1 and e2
can be granted read-write permissions. Enclaves can perform
in-place changes, thus removing the need for memory copies.
However, if e2 becomes faulty at any point, it can observe or
tamper with the intermediate state of r when e1 is performing
its own operations. Figure 1(a) demonstrates this with detailed
space-time sequences. In this design, neither e1 nor e2 can
change the permissions of themselves or other enclaves.
Option 2: Ownership Delegation. An alternative is to dy-
namically transfer the ownership of the region. This way, the
enclave that wants to perform an operation gains exclusive
ownership to ensure no other enclave can interfere (i.e., read
or tamper with intermediate states). After completion, the
enclave can transfer the ownership to the next accessor. In
our example, e1 delegates the ownership to e2, e2 performs
read-write, and transfers the ownership to e1 (see Figure 1(b)).
The exclusive access simplifies security reasoning. However,
the faulty enclave can pass the access to other faulty enclaves
while refusing to return control to the designated enclave. In
addition, the design does not allow concurrent access, only
one enclave can perform operations at any given time. Thus,
the design restricts enclave functionality, such as that needed
for thread synchronization.
Option 3: Dynamic Permissions. One way to support func-
tionality while ensuring security is to allow owner enclaves
to grant and revoke permissions at runtime. In our example,
owner e1 performs its write. Then it revokes its own per-
missions and grants permissions to e2. As the owner of the
memory region, e1 can revoke the permissions of e2, say, af-
ter e2 has finished its read-write operations. Such dynamic
changes allow fine-grained control and reduce the attack win-
dow from faulty enclaves. The design allows enclaves to have
simultaneous access if they both have the permissions. Al-
though this design may seem both efficient and secure, it has
a subtle caveat. The owner enclave can dynamically change
permissions and the non-owner enclaves do not have a fixed
permission view. For instance, although e2 can check if e1

has revoked its permissions before beginning its own write
operation, when e2 is in the middle of a write operation, e1
can regain its read/write permissions and interfere with the
operations of e2, as shown in Figure 1(c). In this way, faulty
owner enclaves can leverage the inconsistent permission view
to launch malicious TOCTOU attacks.
Option 4: Ownership Delegation with Dynamic Permis-
sions. Naïvely combining the above mechanisms is not a
safe solution. As a middle ground, consider the design that
allows enclaves to make dynamic permission changes (as
in Option 3) coupled with ownership delegation. This way,
non-owner enclaves can gain temporary ownership to reliably
control permissions without getting sidelined by the owner
enclave. In our example, e2 gains temporary ownership to per-
form read or write operations. Since e1 is no longer an owner,
it cannot change its own permissions to launch malicious
TOCTOU attacks. This dynamicity brings complexity—the
current owner can still change permissions at any time, mak-
ing security decision-making difficult. In case of simultaneous
access, only one enclave can be an owner, say, e2. The other
enclave, e1, can get the current view and make a security deci-
sion to initiate an operation. However, the temporary owner e2
can change permissions in the middle of such an operation to
attack e1, as shown in Figure 1(d). Thus, the added complexity
does not improve security against malicious races.

2.2 Problem Formulation
None of the design options outlined above allows secure mem-
ory sharing while supporting application functionality at the
same time. They are either too restrictive or too permissive. To
this end, we ask the following research question: Does there
exist a minimal relaxation of the spatial model which allows
memory sharing while retaining its security guarantees?
Threat Model. We assume that the OS can be arbitrarily
malicious. The target application is partitioned into enclaves,
which share one or more regions of memory. Any subset of
enclaves can become compromised, i.e., faulty during the
execution.



We desire the following two security properties.

Property 1: Bounded Escalation. If an owner does not ex-
plicitly authorize an enclave e to access a region r with a said
permission, e will not be able to make that access.

Property 2: Enforceable Serialization of Non-faulty En-
claves. If the application has a pre-determined sequence in
which non-faulty enclaves should serialize their accesses, the
accesses will either obey the sequence or be aborted. Specif-
ically, consider any desired sequence of memory accesses
a1,a2, . . . ,an on a shared region and assume that all enclaves
performing these accesses are non-faulty. The application
author should be guaranteed that the accesses will follow the
desired sequence, even in the presence of other faulty enclaves,
or can be aborted safely. For instance, this property is suffi-
cient to implement memory consistency models such as total
memory ordering [44, 54] and sequential consistency [33, 55].

If a system satisfies the above two properties, it can securely
execute the example (Figure 1). Property 1 eliminates re-
delegation and escalation attacks by limiting permissions.
Property 2 eliminates malicious races and TOCTOU attacks
by enforcing a safe access sequence. At the same time, the
properties admit concurrent accesses and do not encumber
functionality. We will present a baseline design in Section 3.1
which achieves the above goal but with high performance
overheads. Our main contribution is a novel design called
ELASTICLAVE, which offers significantly better performance,
and is explained in Section 4.2.

Assumptions. We assume that the TEE implementation, in-
cluding both the hardware and the software components, is
bug-free. Denial-of-service (DoS) attacks on shared memory
are out of scope, since the OS needs to be able to reclaim
memory at any time for legitimate management reasons. We
assume that the developer correctly expresses the high-level
application-specific security properties as low-level ELASTI-
CLAVE permissions. ELASTICLAVE is not designed to address
the scenario where an enclave wants to share sensitive data
but cannot decide if the receiver enclave is faulty or not. In
addition, ELASTICLAVE cannot protect an enclave that inten-
tionally shares its data with a malicious enclave. Note that this
limitation holds true for any form of sharing, including spatial
isolation. Furthermore, our focus is on defining a memory
interface—micro-architectural implementation flaws and side
channels are out of scope. Defenses against attacks on the
physical RAM or bus interfaces are orthogonal to our work.

3 Baseline Design with Spatial Isolation

We start with a solution that emulates a shared memory ab-
straction between two spatially isolated enclaves. We refer to
this design as the spatial ShMem baseline. This solution can
satisfy our security goals but has poor performance.

3.1 Emulating Shared Memory

Consider two enclaves that keep private copies of the shared
data. Due to the restrictions of the spatial isolation model,
the two enclaves cannot access each other’s private data. The
shared data must therefore either reside in the public memory
accessible to both the enclaves, or rely on message-passing
(e.g., via RPCs) which itself must use the public memory.
Since the untrusted OS can always access data in the public
memory, the spatial ShMem baseline requires employing a
cryptographic secure channel over the public shared memory.
Specifically, the two enclaves encrypt the data before copying
it to public memory and decrypt the data after copying it to
the enclave private memory. We call this mechanism a secure
public memory. Let us assume that the cryptographic keys
are pre-established securely by the enclaves and analyze the
performance overheads.

A secure public memory is not sufficient for a shared mem-
ory abstraction in the spatial ShMem baseline. Concurrently
executing enclaves may want to access data simultaneously,
and such accesses may require serialization in order to main-
tain typical application consistency guarantees. Notice that
reads and writes to the secure public memory involve encryp-
tion and decryption sub-steps, the atomicity of which is not
guaranteed by the TEE. No standard synchronization primi-
tives such as semaphores and futexes—which often rely on
OS-provided services—are trustworthy in our threat model.

One simple way to serialize access in the spatial isola-
tion model is to use a third enclave as a trusted coordinator.
For achieving memory consistency, accesses to the shared
memory are emulated by making RPCs to the trusted coordi-
nator enclave. The coordinator enclave implements the shared
memory by keeping its content in its private memory.

For example, to implement a shared counter, the trusted
coordinator keeps the counter in its private memory, and the
enclave which wants to access the counter can send messages
to the trusted coordinator for reading or updating the counter.

We assume in the baseline that the trusted coordinator is not
faulty or compromised. Without this assumption, the baseline
would require further defenses to tolerate faulty coordina-
tors (e.g., using BFT-based mechanisms). This will result
in even larger performance overheads, since a compromised
trusted coordinator can subvert the semantic correctness of
the shared memory abstraction. It is straightforward to see
that in the baseline design, enclaves never access the shared
region directly. Thus, the trusted coordinator can maintain the
permission view of each enclave and centrally enforce them,
thus satisfying our desired security properties.

3.2 Illustrative Performance Costs

The spatial ShMem baseline is significantly more expensive
than the original shared memory abstraction in a non-enclave
(native) setting. We refer readers to Section 6 for the raw per-



encrypt

Producer Enclave

Consumer Enclave

produce()decrypt

Public 
Memory

(a) Producer-consumer

Req
encrypt

Client Enclave Server Enclave

Req

Resp Resp
decrypt

decrypt

encrypt

Public 
Memory

(b) Client-server

encrypt

decrypt

Source Enclave

Destination Enclave

Proxy Enclave

update

encrypt

decrypt

Public 
Memory

(c) Proxy

Figure 3: Data sharing patterns on the spatial ShMem baseline. The striped boxes represent unencrypted data.

formance costs of the spatial ShMem baseline over the native
setting for data sharing, which can be 1-2 orders of magni-
tude higher. The prime culprit is the encryption-decryption
operations and additional memory copies that are inherent in
the implementation of the secure channel and the trusted co-
ordinator. Recent work has reported such costs over hundreds
of programs [8, 51, 52, 61]. We present three representative
textbook patterns of data sharing that ubiquitously arise in
real-world applications and illustrate why spatial isolation
incurs such significant costs.

Pattern 1: Producer-Consumer. In this pattern, the producer
enclave writes a stream of data to shared memory for a con-
sumer enclave to read and process. Applications use this pat-
tern for signaling the completion of sub-steps of a larger task,
such as in batch processing scripts in web frameworks [1, 2].
For supporting this pattern with the spatial ShMem baseline,
the producer sends the data to the trusted coordinator first,
which maintains all the available data inside a queue and
sends the data to the consumer enclave upon the latter’s re-
quest. Both data transfers have to be protected by secure
channels, which in total would involve 4 data copies and 2
pairs of encryption and decryption (and hence 4 computing
operations per memory word). Figure 2 depicts the steps. Al-
ternatively, the queue can be stored inside the private memory
of the consumer enclave. The producer directly sends the data
to the consumer enclave, which saves it inside a queue in its
own private memory. The consumer enclave can then con-
sume the data directly from this queue at a certain point in
the future. This solution involves 2 data copies and 1 pair of
encryption and decryption as shown in Figure 3a.

Pattern 2: Client-Server. As explained in our Section 2.1
example, a client enclave and a server enclave exchange data
with each other with simultaneous reads and writes. For sup-
porting this pattern, there will be at least 4 data copies—one in
server private memory, one client private memory, and two for
passing data between them via a public memory. Furthermore,
the data is encrypted and decrypted twice, once for read and
once for write. Therefore, it incurs 4 computing operations
per memory word as shown in Figure 3b.

Pattern 3: Proxy. An application may serve as an intermedi-
ate proxy between a producer and a consumer. For example,
consider a caching proxy in a web service that saves responses

Pattern Spatial ELASTICLAVE

Enc Dec Cpy Instructions

1 Producer-Consumer L L 2 ·L 4
2 Client-Server 2 ·L 2 ·L 4 ·L 4
3 Proxy 2 ·L 2 ·L 4 ·L 4

Table 1: Data sharing overheads of spatial isolation vs. ELAS-
TICLAVE. L: data size (memory words) in the shared region.

to frequent requests and serves them by modifying incoming
requests (e.g., Nginx [4]). Proxy designs can be implemented
as two instances of the producer-consumer pattern, where
the proxy acts as the consumer for the first instance and the
producer for the second. However, in practice, proxies of-
ten optimize by processing the shared data in-place without
copying it across different queues. Such in-place memory
processing is not compatible with the spatial memory model,
and applications which originally use this pattern must in-
cur additional memory copies. The data stream must reside
in the public memory to be accessible to the proxy enclave,
but at the same time, the proxy cannot operate on the pub-
lic memory in-place, or else it would risk modifications by
other enclaves or leaking secrets through intermediate states
of the data. Therefore, there are at least 2 memory copies of
the 2 original shared data contents, totaling 4 copies when
supporting this pattern with the spatial ShMem baseline, as
shown in Figure 3c. Similarly, the data needs to be encrypted
and decrypted twice, leading to 4 computing operations per
memory word.

4 ELASTICLAVE Design

We have established in Section 2.1 that relaxing the memory
model poses subtle security challenges. On the other hand,
retaining the rigid spatial isolation model leads to prohibitive
performance overheads. Next, we present the ELASTICLAVE
design that strikes a balance between those two extremes.

4.1 Overview

We highlight the importance of three key first-class abstrac-
tions in ELASTICLAVE that allow interacting enclaves to:



(a) have individual asymmetric permission views of shared
memory regions, i.e., every enclave can have a local view
of their memory permissions; (b) dynamically change these
permissions as long as they do not exceed a pre-established
maximum; and (c) obtain exclusive access rights over shared
memory regions and transfer it atomically in a controlled
manner to other enclaves.

As a quick point of note, we show that the above three ab-
stractions are sufficient to drastically reduce the performance
overheads highlighted in Section 3.2. In particular, Table 1
shows that ELASTICLAVE eliminates all the extra copies and
encrypt/decrypt operations with a small constant number of
instructions, whereas the spatial ShMem baseline requires
operations linear in the size L of the shared data accessed. We
will explain how it achieves such reduction in Section 4.3.

Our design works on the granularity of ELASTICLAVE
memory regions, which correspond to non-overlapping physi-
cal memory and map to contiguous ranges of virtual memory
addresses in the enclave. From the view of each enclave, an
ELASTICLAVE memory region has four permission bits: stan-
dard read, write, execute, and a protection lock bit.

Each memory region has one enclave as its sole owner.
Only the owner of a memory region has the privilege to share
it with other enclaves. We call all the enclaves that are inter-
ested in accessing a memory region its accessors. The owner
of a memory region is also one of its accessors. ELASTICLAVE
provides three first-class abstractions: asymmetry, dynamicity,
and exclusivity in the permission views of an enclave.
Asymmetric Permission Views. In the data patterns exam-
ined in Section 3.2, different enclaves require different per-
missions over the shared memory. For example, one enclave
has read-only access whereas the others have write access.
The spatial model is a one-size-fits-all approach. It does not
allow enclaves to set asymmetric permissions for a public
memory region securely—the OS can always undo any such
enforcement that enclaves might specify via normal permis-
sion bits in the TEE. ELASTICLAVE allows different enclaves
to specify their own set of permissions (or views) over the
same shared region for the TEE to enforce. This directly trans-
lates to avoiding the costs of creating data copies into separate
regions, where each region has a different permission.
Dynamic Permissions. In the spatial isolation model, if en-
claves need different permissions over time on the same
shared data, they have to create separate data copies. ELAS-
TICLAVE eliminates the need for such copies and allows en-
claves to change permissions over time. For example, in Pat-
tern 1, when the producer enclave generates data it has read-
write permissions, while the consumer enclave has no permis-
sions. After that, the producer drops all its permissions, and
the consumer enclave gains read-write permissions to process
the data. This way, the enclaves avoid interfering with each
other’s operations on the shared region.

While enabling dynamic permissions, ELASTICLAVE does
not allow enclaves to arbitrarily escalate their permissions

Instruction Permitted Caller Semantics

uid = create(size) owner of uid create a region

err = map(vaddr, uid) accessor of uid map VA range to a region

err = unmap(vaddr, uid) accessor of uid remove region mapping

err = share(uid, eid, P) owner of uid share region with an enclave

err = change(uid, P) accessor of uid change permission to a region

err = destroy(uid) owner of uid destroy a region

err = transfer(uid, eid) current lock holder transfer lock to another accessor

Table 2: Summary of security instructions in ELASTICLAVE.

over time. Only the owner can share a memory region with
other accessors during the lifetime of the memory region.
When the owner shares a memory region, it sets the static
maximum permissions it wishes to allow for the specified
accessor. Once set by the owner, this static maximum is fixed
for a specified enclave. For the owner, the static maximum is
the full permissions with all bits set. Accessors can escalate
or reduce their own privileges dynamically, but if an accessor
tries to exceed the static maximum at any given point in time,
ELASTICLAVE delivers an exception to it.
Acquiring and Transferring Exclusive Locks. ELASTI-
CLAVE incorporates a special bit for each memory region
called the lock bit. It serves as a synchronization mecha-
nism among mutually distrusting enclaves. ELASTICLAVE
ensures that at any time at most one accessor has the lock bit
set, and we call this accessor the lock holder when it exists.
As long as the lock holder exists, it is guaranteed to be the
only accessor that can access the memory region—the per-
missions for all the other accessors, including the owner, are
temporarily disabled. In this way, ELASTICLAVE guarantees
that the lock holder has exclusive access to the region. A lock
holder can choose to clear the lock bit (i.e., release the lock)
without specifying the next holder or atomically transfer it
to another accessor. Atomic transfers are useful for flexible
but controlled transfers of exclusive access over regions. For
example, in Pattern 3, the source holds the lock bit for exclu-
sive access to the region when writing the request. Then, the
source transfers the lock directly to the proxy. After the proxy
updates the data with exclusive access, it transfers the lock to
the destination. The two lock transfers ensure exclusive access
for the intended accessor at any time. Note that transferring
exclusive lock does not entail a transfer of ownership.

4.2 Design Details

As summarized in Table 2, the ELASTICLAVE model consists
of seven instructions which operate on ELASTICLAVE mem-
ory regions. Each region is addressable with a universal identi-
fier that uniquely identifies it in the global namespace and can
map to different virtual addresses in different enclaves. Next,
we explain the ELASTICLAVE design by walking through the
typical life cycle of a region.



Owner’s View. An enclave e can create a new memory region
r with the create instruction. It takes the memory region size
as input and returns a universal identifier (uid) of the newly
created memory region. In this case, the enclave e will be
the unique owner of the memory region r throughout the
lifetime of r. The owner can then share the memory with
any other enclave using the share instruction, specifying the
uid of the memory region, the enclave ID (eid) of the other
accessor, and the static maximum permissions allowed for
that accessor. Once a memory region has been shared with a
target enclave, the owner cannot change or revoke the static
maximum permissions without destroying the entire region.

A memory region can be destroyed by its owner at any time
with the destroy instruction. This instruction ends the life-
time of the memory region in all enclaves and ELASTICLAVE
sends a signal to all its accessors. The OS can tear down an
enclave at any time (similar to EREMOVE in Intel SGX) to re-
claim the memory region it owns and protect the system from
enclave-launched denial-of-service attacks.
Accessor’s View. Before accessing a memory region, an ac-
cessor, including the owner, needs to use the map instruction
to map it to a specified virtual address range. This can be done
more than once, resulting in multiple mapped instances in the
virtual address space, but access permissions to the memory
region apply to all of them. The accessor can then use the
change instruction to dynamically change the permissions of
a memory region. This is allowed as long as the permissions
are equal to or more restrictive than (i.e., subset of) the static
maximum permissions for that accessor. For the owner of a
memory region, the static maximum permissions are the full
permissions. The owner specifies the static maximum permis-
sions for other accessors via the share instruction. Changes
to such permissions are local to each accessor and do not in-
terfere with permissions of other accessors. Unlike the owner,
a non-owner accessor cannot invoke share or destroy to
share or destroy a memory region.
Permission Checks. The ELASTICLAVE TEE implementa-
tion enforces the permissions defined by enclaves in their
local views. A permission bit is set to 1 if the corresponding
memory access (read, write, or execute) is allowed, and 0 oth-
erwise. For each memory access, the TEE hardware performs
a permission lookup and decides whether to allow the access.
Such permission checks complement the paging-based mem-
ory protection mechanism, i.e., access is allowed only when
it passes both checks. This enables both enclaves and the OS
to manage their own paging while enforcing the permissions
defined by ELASTICLAVE.

ELASTICLAVE performs two categories of security checks:
(1) availability check of the requested resources (e.g., mem-
ory regions and enclaves) to ensure that instructions will not
operate on non-existing resources; and (2) permission checks
of the caller to ensure that it has sufficient privilege for the
requested instruction. Table 2 shows the permitted caller for
each instruction. For example, only the owner of a region can

invoke share and destroy instructions.
The change instruction is the interface for dynamically

updating permissions of a shared region. ELASTICLAVE re-
quires that the newly requested permissions (P) by an enclave
fall within the limits of its static maximum permissions (max).
Specifically, ELASTICLAVE checks that P⊆max. The lock bit
can only be set to 1 in the local view of a single enclave (i.e.,
the lock holder) at any instance of time. When it is set for one
enclave, ELASTICLAVE enforces the local permission bits for
that enclave and guarantee that none of the other enclaves has
any access to the region. Otherwise, ELASTICLAVE enforces
the local permission bits for all enclaves.

Lock Acquire & Release. An accessor can attempt to ac-
quire or release the lock by using the change instruction. It
returns the accessor’s modified permissions, including the
lock bit that indicates whether the acquire/release was suc-
cessful. ELASTICLAVE ensures that at any instance of time,
only a single enclave is holding the lock. If any other enclave
accesses the region or tries to issue a change instruction on
the permissions of that region, these requests will be denied.

A lock holder can use the change instruction to release
locks. However, there are situations where the lock holder
wishes to explicitly specify which other enclave it intends
to make the next lock holder of the lock. ELASTICLAVE al-
lows the lock holder to invoke a transfer instruction which
specifies the enclave ID of the next desired accessor. The
next lock holder must have the memory region mapped in its
address space for the transfer to be successful. A successful
transfer instruction clears the lock bit in the source enclave
permissions and sets that of the target enclave atomically. The
other permission bits and the virtual address mappings of the
shared memory region remain unchanged.

ELASTICLAVE Exceptions & Signals. ELASTICLAVE issues
exceptions whenever an enclave attempts memory operations
that violate any permission checks. ELASTICLAVE notifies
enclaves about events that affect the shared memory region
via asynchronous signals. ELASTICLAVE issues signals un-
der two scenarios. First, when the owner destroys a memory
region r, ELASTICLAVE will invalidate permissions granted
to other enclaves since the memory region no longer exists.
To prevent enclaves from continuing without being aware
that the memory region can no longer be accessed, ELAS-
TICLAVE will send signals to notify all accessors who had
an active mapping (i.e., mapped and not yet unmapped) for
the destroyed memory region. The second usage of signals
is to notify changes on lock bits. Each time an accessor suc-
cessfully acquires or releases the lock (i.e., using change or
transfer instructions), ELASTICLAVE issues a signal to the
owner. The owner can choose to mask such signals or to ac-
tively monitor the lock transfers. When a transfer succeeds,
ELASTICLAVE notifies the new accessor via a signal.

Using ELASTICLAVE Interface. Enclaves can invoke the
ELASTICLAVE instructions listed in Table 2. Non-enclave



code, including the host process and the OS, can also use the
ELASTICLAVE interface, but is treated as a single entity. The
interface uniquely identifies enclaves and memory regions
with identifiers (eids and uids), which we implement as non-
repeating integer values. We reserve the special eid 1 for
referencing the untrusted code. Enclaves can exchange eids
and uids using attestation and secure channels.

Compatibility with Spatial Isolation. It is easy to see that
ELASTICLAVE is more expressive than the spatial isolation
model, and hence keeps complete compatibility with designs
that work in the spatial isolation model. Setting up the equiv-
alent of the public memory is simple. The owner can create
the region and share it with rwx− for all the entities. Private
memory simply is not shared after creation by the owner.

Built-in Privilege De-escalation. In ELASTICLAVE, enclaves
can self-reduce their privileges below the allowed maximum
without raising any signals to other enclaves. This enables
compatibility with other low-level defenses which enclaves
may wish to deploy for their own internal safety. For example,
enclaves can use it to make shared data non-executable or to
write-protect shared security metadata.

Achieving Our Security Goals. The two desirable security
properties outlined in Section 2.2 immediately follow from
the ELASTICLAVE interface. ELASTICLAVE ensures the first
property of bounded escalation due to three design points:

(a) Only the owner can use create to change the set of en-
claves that can access a region. Non-owner enclaves cannot
grant access permissions to other enclaves since there is no
permission re-delegation instruction in the interface.
(b) Each valid enclave that can access a region has its permis-
sions bounded by an owner-specified static maximum.
(c) For each access or instruction (see Table 2), the identity of
the accessor and the permission are checked to be legitimate.

The second property of enforceable serialization of non-
faulty enclaves is guaranteed by composing two ELASTI-
CLAVE abstractions:

(a) For each access ai by an enclave e(ai) in the pre-
determined sequence, the accessor can first acquire the lock
to be sure that no other accessors interfere.
(b) When the accessor changes, say at access a j, the current
enclave e(a j) can safely hand over the lock to the next acces-
sor e(a j+1) by using the transfer instruction.

Faulty enclaves cannot acquire the lock and access the
region at any intermediate point in this access chain. For
example, in Pattern 3 (proxy), once the proxy enclave modifies
the data in-place, simply releasing the lock is not safe. A faulty
source enclave can acquire the lock before the destination
does and tamper with the data. With the transfer instruction,
the proxy can eliminate such attacks.
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Figure 4: Data sharing patterns with ELASTICLAVE. map
instructions are omitted. For the proxy pattern, we omit
change(u, rw--) of the destination enclave at t1.

4.3 Performance Benefits

We revisit the example patterns discussed in Section 3.2 to
show that these patterns can be implemented with significantly
lower costs (summarized in Table 1) with ELASTICLAVE.

Revisiting Pattern 1: Producer-Consumer. This pattern can
be implemented in ELASTICLAVE with a queue in a shared
memory region between the producer and the consumer en-
claves. Each enclave acquires the lock before accessing the
queue with exclusive write permissions. The consumer needs
write permissions to update the queue head pointer. This way
it can indicate the consumed locations that can be recycled by
the producer. The exclusive access used by both enclaves pre-
vents TOCTOU attacks and secret leakage through intermedi-
ate data. The overheads of each enqueue or dequeue opera-
tions are reduced to zero copies and no encryption-decryption.
Both the enclaves can abuse their permissions. For example,
only the producer should be able to update the queue data and
the tail pointer, but a malicious consumer can try to modify
them. This does not compromise security, however, because
the consumer can only tamper with the content or the ordering
of the data it is about to read. Similarly, only the consumer
should update the head pointer, but a malicious producer can
modify it too. Despite this, the producer can merely force the
consumer to re-process or skip some queue elements, which it
can already perform without abusing the permissions. There-
fore, such permission abuse does not compromise the security
of either enclave.
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Figure 5: Producer-consumer pattern on ELASTICLAVE. map
instructions are omitted. A queue (including both its data
and the head and tail pointers) resides in a shared memory
region. Enclaves use change to acquire exclusive writable
permissions before producing or consuming data in the queue
and update the head and tail pointers.

Revisiting Pattern 2: Client-Server. Client-server can ex-
change data via a client-owned memory region (Figure 4a),
where the server has rw−l maximum permissions. The client
writes the data and uses change to revoke its own permis-
sions. The server gets exclusive read-write permissions with
change, processes the data in-place, and revokes its permis-
sions. The client then reads the response with exclusive read
permissions. Thus, compared with spatial isolation, ELASTI-
CLAVE eliminates data copies and encryption-decryption.
Revisiting Pattern 3: Proxy. In the proxy pattern, the three
entities access the shared data in sequential order: first the
source, then the proxy, then the destination. All three entities
can hold the lock bit in this order to stop any faulty enclaves
from accessing the shared memory where unintended. The
ELASTICLAVE transfer instruction eliminates the attack
windows when a lock is passed from one enclave to another.
Specifically, it allows the source to atomically transfer the
lock to the proxy, which then atomically transfers it to the
destination. With these two transfer instructions, the proxy
can be implemented without any extra copy of the shared data
as shown in Figure 4b.

5 Implementation

We build a prototype implementation of ELASTICLAVE on
Keystone, an open-source TEE for RISC-V platforms [34].
Keystone provides a Linux driver and an SDK to create, start,
resume, and terminate enclaves. We do not use the original
spatial isolation model in Keystone.
RISC-V Privilege Levels. RISC-V software runs on three
different privilege levels: machine mode (m-mode), supervisor
mode (s-mode), and user mode (u-mode). They form a priv-
ilege hierarchy similar to the protection rings on Intel x86,
with m-mode being the most privileged and u-mode the least.
m-mode software has full control over memory and hardware
resources, and is not constrained by memory protection mech-

anisms such as paging. RISC-V TEEs [10, 24, 34] are usually
implemented as slim m-mode security monitors. All the other
software on the system, including the OS and user applica-
tions (including enclaves), resides in s-mode or u-mode.
RISC-V PMP. The physical memory protection (PMP) fea-
ture of RISC-V allows m-mode to restrict physical memory
accesses of software at lower privilege levels (s-mode and
u-mode). To use this feature, m-mode configures PMP entries,
which are a set of registers in each CPU core. Each PMP
specifies one contiguous physical address range and its corre-
sponding access permissions. PMP is enforced alongside the
classical page-based virtual memory system. For all s-mode
and u-mode memory accesses, the hardware looks up PMP
entries against their physical addresses after the address trans-
lation. Note that only m-mode can modify them.

RISC-V implementations are free to cache the PMP lookup
results to optimize the performance. This choice concerns the
micro-architectural implementation of RISC-V and is not part
of the Elasticlave design or implementation. After each PMP
update, the m-mode software needs to use the sfence.vma in-
struction in RISC-V to prevent the hardware from using stale
PMP configurations. An example is the RocketChip imple-
mentation of RISC-V [9] which caches PMP lookup results
in TLBs. In such a case, sfence.vma performs a TLB flush
to keep PMP lookup results up-to-date. Interested readers can
refer to the RISC-V standard specifications [47].

We implement ELASTICLAVE as an m-mode software secu-
rity monitor, similar to other RISC-V TEEs [10, 24, 34]. The
security monitor stores all the metadata about the memory
regions, enclaves, static maximums, and permissions in the
m-mode memory, which is protected by one reserved PMP en-
try. The OS (s-mode) and applications (u-mode, no matter in
enclaves or not) cannot read or update them. Upon a context
switch between an enclave and the untrusted OS, the security
monitor looks up the permissions metadata maintained in the
m-mode memory and loads it into the PMP registers.

When the enclave invokes an ELASTICLAVE instruction,
the execution traps into m-mode. s-mode or u-mode software
cannot change this control flow. After checking that the en-
clave is a permitted caller of the instruction (Table 2), s-mode
performs the requested operations and updates the metadata
and PMP when necessary.

ELASTICLAVE keeps three mappings in its implementation:
(a) virtual address ranges to the corresponding mapped uid in
each enclave; (b) uid and corresponding permission metadata
(including permissions and static maximum permissions in
each enclave and ownership); and (c) the effective physical
address range to which each uid maps. Thus, when an enclave
tries to access a virtual address, ELASTICLAVE performs a
two-level translation: from a virtual address to a uid and
subsequently to a physical address. Permission checks are
performed by looking up the permission metadata tied to the
uid. The map and unmap instructions only update mapping
(a). The transfer and change instructions update mapping



(b). The share and create instructions update mappings (b)
and (c). The destroy instruction removes data tied to the
provided uid from all three mappings.

ELASTICLAVE relies on PMP entries to enforce the access
permissions to memory regions. For each memory region,
ELASTICLAVE sets up one PMP entry to protect its mapped
physical address range, irrespective of the number of its ac-
cessors. Additionally, the security monitor and the OS each
reserve one PMP entry for their own private data. Consider the
case where each enclave has one private memory region and
one shared memory region, each requiring a PMP entry. In this
example, N PMP entries can support up to (N−2)/2 concur-
rent enclaves. When the enclave requests permission changes,
the corresponding PMP entries must reflect the updates. In
our multi-core implementation, changing permissions on one
core sometimes requires adjusting the PMP entries on an-
other core. For example, if core A is running code outside
enclaves and core B is handling an enclave request to create a
memory region, core A should not be able to access the new
memory region. To handle such cases, ELASTICLAVE issues
inter-processor interrupts to cores that need to adjust their
PMPs. The core that initiated the permission change does not
resume until all cores have finished the adjustment. When
context-switching between enclaves, apart from the standard
register save-restore, Keystone modifies PMP entries to dis-
allow access to enclave private memory—this is because of
its spatial isolation design. We modify this behavior to allow
continued access to shared regions even when the owner is not
executing. Our implementation of the exclusive lock bit, by
atomically changing permissions, does not halt large portions
of the system. It only halts enclaves that attempt to access a
locked memory region.

The OS allocates physical memory in ELASTICLAVE, simi-
lar to Keystone. m-mode requests the OS to allocate or deallo-
cate physical memory. For allocation, the OS returns the base
of the physical memory and m-mode assigns the permissions
and updates the PMPs. For deallocation, m-mode scrubs the
memory region and informs the OS of its base and size.

To allow enclaves to capture exceptions, m-mode configures
the exception delegation register (medeleg) to delegate ac-
cess fault handling to s-mode. Signal delivery from s-mode to
enclaves is immediate, i.e., the target enclave is immediately
interrupted and upon return from m-mode jumps to a previ-
ously registered signal handler. Note that neither mechanism
involves the untrusted OS.

6 Evaluation

We aim to answer the following questions in our experiments:
(a) How does the performance of ELASTICLAVE com-

pare with the spatial ShMem model and native execution
on RISC-V?

(b) What is the impact of ELASTICLAVE on software
trusted computing base (TCB) and hardware complexity?

Benchmarks. We evaluate ELASTICLAVE and the spatial
ShMem baseline (Section 3.1) on two types of benchmarks:
(a) implementation of three data patterns with varying num-
ber of regions and size of data, thread synchronization work-
loads with controllable lock contention; (b) standard bench-
marks for I/O (IOZone [29]), parallel computation (SPLASH-
2 [13, 56]), and CPU-intensive workloads (machine learning
inference with Torch [59,60]). Table 3 provides a summary of
the benchmarks details. We manually modify these programs
to add ELASTICLAVE instructions, since we do not presently
have a compiler targeting ELASTICLAVE. Due to the lack of
compiler support, it is difficult to port larger real-world appli-
cations. However, to estimate performance improvements for
larger applications, we profile two real-world applications: a
web server that uses Lighttpd with Nginx and Memcached.
We estimate the expected end performance improvements if
they run on ELASTICLAVE from the profiled information.

Experimental Setup. We use a cycle-accurate, FPGA-
accelerated simulation of RocketChip [9] with FireSim [32].
Each system consists of four RV64GC cores, 16 KB instruc-
tion and data caches, 16 PMP entries per core (unless stated
otherwise), and a shared 4 MB L2 cache. For the evaluation
of hardware complexity, we use a commercial 22 nm process
with Synopsys Design Compiler version L-2016.03-SP5-2 tar-
geting 800 MHz. We generate the L1 caches with commercial
SRAM libraries and exclude the L2 cache.

6.1 Performance of ELASTICLAVE

Synthetic Benchmark: Data-Sharing Patterns. We con-
struct synthetic benchmarks for the three patterns. Since we
are interested solely in data sharing overheads, we exclude
any application-specific data processing in those benchmarks.
We set up two enclaves for producer-consumer and client-
server and three enclaves for the proxy pattern. We compare
the (a) full ELASTICLAVE support as described in Section 4.2
(ELASTICLAVE-full); (b) ELASTICLAVE without the lock per-
mission bit design (ELASTICLAVE-nolock); and (c) spatial
isolation which transfers data through secure public mem-
ory. Figure 6 shows the performance for the three patterns.
Figure 7 further shows the breakdown for the proxy pattern.

Observations: ELASTICLAVE-full performs better than spa-
tial, especially for larger record sizes. We observe a 60×
speedup for 512 bytes and 600× for 64 KB record sizes.
ELASTICLAVE-full eliminates copies and the only costs are
due to security instructions. Thus, its overheads do not in-
crease with the data size, unlike spatial. ELASTICLAVE-
nolock is slower than ELASTICLAVE-full. As shown in Fig-
ure 7, it incurs larger overheads that increase with the data
size because it does not fully eliminate data copying.

Synthetic Benchmark: Thread Synchronization. We imple-
ment a common workload for locks between threads run-
ning in separate enclaves, such that none of the enclaves



Benchmark Shared Data Size Data Sharing Spatial ELASTICLAVE

Synthetic Benchmarks

Client-Server 512 bytes – 64 KB C->S; S->C C->U->S; S->U->C r1 (C): S (r--l); r2 (A): S (rw-l)
Producer-Consumer 512 bytes – 64 KB P->A P->U->C r (P): C (rw-l)
Proxy 512 bytes – 64 KB S->P->D S->U->P->U->D r (S): P (rw-l), D (rw-l)
Thread Synchronization 16 bytes A<->B A<->U<->C<->U<->B r (A): B (rw--), O (r---)

Real-World Benchmarks

File I/O (IOZone) 4 KB – 1 MB A->O; O->A A->U->O; O->U->A r (A): O (r--l); r(A): O (rw-l)
Parallel Computation (SPLASH-2) 16 MB A<->B A<->U<->C<->U<->B r (A): B (rw--)
ML Inference 3 KB – 262 KB O->A O->U->A r (A): O (rw-l)

Table 3: Summary of evaluated benchmarks. S (server/source), C (client), P (proxy), D (destination), A and B are user applications.
O is the operating system. U is the untrusted memory. Arrows indicate the flow of data. For ELASTICLAVE, the shared memory
regions are specified in the region (owner): accessor1 (maxperm1), accessor2 (maxperm2), ... format.

(a) Producer-consumer (b) Client-server (c) Proxy

Figure 6: Performance of the three data-sharing patterns. ELASTICLAVE achieves constant overheads irrespective of the shared
data size, around two orders of magnitude lower than those of spatial, which increase with the shared data size.

(a) ELASTICLAVE-full (b) ELASTICLAVE-nolock (c) spatial

Figure 7: Performance breakdown for the proxy pattern. When the shared data size grows, copying and encryption-decryption
claim a growing percentage of overheads of spatial, which ELASTICLAVE eliminates at a constant cost from security instructions.

trust the OS. For ELASTICLAVE, we implement locks with
simple spinlocks (ELASTICLAVE-spinlock) and futexes
(ELASTICLAVE-futex). For spinlocks, we keep the lock state
in a shared region which is inaccesssible to the OS. For
futexes, the untrusted OS has read-only access to the lock
states, which allows enclaves to sleep while waiting for locks
and be woken up by the OS when locks are released. This
form of sharing corresponds to the one-way isolation de-
scribed in Section 3.2, where the OS has read-only permis-
sions. For spatial, we implement a dedicated trusted coordina-
tor enclave to manage the lock states. Enclaves communicate
with it through secure public memory for lock acquisition and

release. To characterize the amount of work a thread does
while holding the lock, we set up an empty loop between lock
acquisition and lock release in our benchmarks. We adjust the
number of iterations and report the number of cycles averaged
over an iteration.

Observations: ELASTICLAVE-futex and ELASTICLAVE-
spinlock perform better than spatial, especially when the work
between lock acquisition and lock release is small, i.e., the
lock is acquired and released often. For larger work amounts,
the time spent waiting for the lock is smaller than the time
spent acquiring and releasing the lock. Here, the three set-
tings have comparable performance. In addition, ELASTI-



CLAVE-futex achieves up to 1.5× improvement in CPU-time
performance over ELASTICLAVE-spinlock, despite having
no observable advantage in terms of real-time performance
(wall-clock latency).
Real-World Benchmark 1: File I/O. IOZone [29] makes
frequent file I/O calls from the enclave into the untrusted
host process. Here, the data pattern between the OS and the
enclave corresponds to either the producer-consumer pattern
(for write) or the client-server pattern (for read). For spatial,
the OS and the enclave communicate via the public memory.
Since the OS is one of the communicating entities, secure
public memory is not needed. For ELASTICLAVE, the enclave
passes data to the OS via a shared memory region. Figures 8a
and 8b show the write and read bandwidth.
Observations: Even though spatial does not use secure public
memory for communication, ELASTICLAVE achieves a higher
bandwidth than spatial when the record size grows above a
threshold (16 KB). The bandwidth increase reaches as high as
40% for the writer workload and around 50% for the reader
workload when the record size is sufficiently large.
Real-World Benchmark 2: Parallel Computation. We
adapt seven SPLASH-2 workloads to a two-enclave setting by
placing the data in a dedicated memory region which is then
shared across the enclaves. For spatial, a trusted coordinator
maintains the shared data. The enclave runtime traps and emu-
lates load/store instructions that operate on the memory region
by converting them to RPCs. In ELASTICLAVE the enclaves
directly store the data in a shared memory region. Figure 9
shows their performance comparison. Since we were not able
to run libsodium inside the enclave runtime, we did not use
encryption-decryption when copying data to and from secure
public memory for spatial in this experiment. Therefore, the
actual overheads in a secure implementation would be higher
than reported here. Thus, even with cryptographic accelerators
(e.g., AES-NI) to speed up spatial, ELASTICLAVE benefits
from zero-copies and outperforms spatial.
Observations: ELASTICLAVE overheads are independent of
the data size and are 2-3 orders of magnitude lower than those
of spatial for data-intensive workloads.
Real-World Benchmark 3: ML Inference. We run four
machine learning models for image classification [59] that
involve minimal data sharing. Each of the inference models
runs with a single enclave thread. In ELASTICLAVE, we use
a shared memory region to load input images and write re-
sults, as in the client-server pattern. The three settings exhibit
similar performance (Figure 12).
Observations: ELASTICLAVE does not impact the perfor-
mance of CPU-intensive programs with minimal data sharing.
Summary. Compared to spatial, ELASTICLAVE improves
I/O-intensive workload performance up to 600× (data size >
64 KB) and demonstrates 50% higher bandwidth. For shared-
memory benchmarks, it gains up to a 1000× speedup.
Comparison with Native. ELASTICLAVE only adds 10%

overheads compared to native (traditional Linux processes
without enclave isolation) for a range of benchmarks (Fig-
ure 9, 10, 12, and 11). The performance of ELASTICLAVE
is comparable to that of native for frequent data sharing over
large record sizes (Figures 8a and 8b).

6.2 Impact on Implementation Complexity

TCB. The ELASTICLAVE TCB is 6814 LoC, including 3085
LoC for implementing the ELASTICLAVE interface in m-mode,
and 3729 LoC that uses the interface in an enclave. Figure 4
gives a detailed TCB breakdown.
Context Switches. Context switching between enclaves and
the OS involves PMP changes. Thus, the overheads may
change with the number of PMP-protected memory regions.
To empirically measure this, we record the percentage of cy-
cles spent on context switches in either direction for a work-
load that never explicitly switches out to the OS. Therefore,
all context switches from the enclave to the OS are due to
interrupts. The percentage overheads increase linearly with
the number of memory regions but is negligibly small: 0.1%
for one memory region and 0.15% for four memory regions.
TLB Flushes. Since we prototype ELASTICLAVE on Rock-
etChip, which caches PMP lookup results in TLBs, it is nec-
essary for the security monitor to perform a TLB flush on a
core every time permissions on it are changed. This could
incur extra overheads. However, note that such overheads are
not inherent to ELASTICLAVE, but are incurred in Keystone
as well whenever an enclave is created or destructed. More-
over, TLB flushes only occur on cores that require permission
changes, which can happen only when the enclave running on
the core is invoking the change instruction, or when a region
is locked, unlocked, created, or destructed. Only lock and re-
gion creation/destruction operations incur updating additional
cores that are affected by the change.
Hardware Critical Path Delay. The only impact of ELASTI-
CLAVE on RISC-V hardware is on the increased PMP pres-
sure (i.e., each memory region requires at least one PMP
entry). To determine the critical path of the hardware design
and examine if the PMP entries are on this path, we push
the design to a target frequency of 1 GHz1. We measure the
latency of the global critical path of the whole core and that
of the critical path through the PMP registers. With this, we
compute the slack, which is the desired delay minus the actual
delay. A larger slack corresponds to a smaller actual delay
in comparison to the desired delay. We find that the slack
through PMP is significantly better than the global critical
path. With 16 PMP entries, the slack through PMP is −44.1
picoseconds compared to −190.1 picoseconds for the global
critical path. In other words, the PMP would allow for a higher

1We set the frequency higher than 800 MHz (which is what we have
for our successful synthesis) to push the optimization limit of the hardware
design so we can find out the bottleneck of the hardware design.
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Figure 8: IOZone Bandwidth for 8M and 512M byte files. Figure 9: SPLASH-2 wall-clock time in cycles.

Figure 10: Synthetic Thread Synchronization Performance.

Figure 11: ELASTICLAVE-futex vs. ELASTICLAVE-spinlock.

clock speed, but the rest of the design prevents it. Thus, the
number of PMP entries is not the bottleneck of the timing of
the hardware design. We also tested that PMPs are not on the
critical path for 8 and 32 PMP settings as well (details elided
due to space). As a direct result, the number of PMP entries

Figure 12: Cycles spent running each ML model.

Figure 13: RocketChip Area vs. numbers of PMP entries.

does not create a performance bottleneck for any instruction
(e.g., load/store, PMP read/write) in our tests.

Area. To explore how the increased PMP pressure brought by
our prototype ELASTICLAVE implementation may increase
chip area requirements, we synthesize RocketChip with dif-
ferent numbers of PMP registers and collect the area statistics.
The range we explore goes beyond the limit of 16 in the
standard RISC-V ISA specification. Figure 13 exhibits the
increase in the total area with increasing numbers of PMP
entries. Starting with no PMP entries, every 8 additional PMP
entries incurs an increase of 1% in the total area. This increase



Function ELASTICLAVE Enclave
Privileged TCB Runtime

uid management 1070 0
Permission enforcement 574 0
ELASTICLAVE instruction interface 219 82
Argument marshaling 0 88
Wrappers for ELASTICLAVE interface 0 1407
Miscellaneous 960 1869

Total 3085 3729

Table 4: Breakdown in LoC of ELASTICLAVE TCB.

Case study I. proxied web server II. KV store

Transfer li→ng ng→li li→py py→li mc↔client

Data size 2049.6MB 1.4MB 10.6MB 2051.5MB 1157.7MB
Frequency 250276 21004 185956 670786 2002017

Spatial Isolation

Copy 4099.1MB 2.8MB 21.2MB 4103.1MB 2315.5MB
Enc-Dec 4099.1MB 2.8MB 21.2MB 4103.1MB 2315.5MB

ELASTICLAVE

Instr 500552 42008 371912 1341572 4004034

Table 5: Profiling results of applications along with projected
costs in spatial isolation and ELASTICLAVE.

is equivalent to 2.3% of the L1 data cache area.

6.3 Profiling Real Applications

We present profiling results to demonstrate how the perfor-
mance improvements of ELASTICLAVE apply to large real-
world applications. We use two common multi-process setups:
(1) Lighttpd web server with Nginx as its SSL/TLS termina-
tion. The Lighttpd instance communicates (through FastCGI)
with a Python process to generate dynamic HTTP responses.
We generate the workload with single-threaded wrk maintain-
ing 50 connections for 180 seconds and requesting 100 KB
dynamically generated random resources.
(2) Memcached serving as an in-memory key-value store for
another application (e.g., web server). It receives updates or
queries from outside and sends back the results. We run it
with YCSB workload A (one million records).

As shown in Table 5, both setups incur large inter-process
data transfers. In the first setting, data transfers are especially
intensive from Lighttpd to Nginx and from python to Lighttpd,
both reaching 2 GB. The second setting also involves trans-
ferring over 1 GB of data. In both settings, spatial isolation
requires copying data twice as well as a pair of encryption-
decryption, leading to around 8 GB and 2 GB of data copying
and encryption-decryption operations respectively. ELASTI-
CLAVE eliminates those operations at the cost of 2 extra secu-
rity instructions per data transfer, which totals around 2×106

and 4×106 instructions respectively. To estimate the perfor-
mance improvement, we calculate the average record sizes
of the data transfers, which are around 4 KB and 0.5 KB re-
spectively. By comparing them against the benchmark results
for the producer-consumer pattern (Figure 5), we conclude

that ELASTICLAVE is able to bring 2 orders of magnitude
performance improvement over spatial isolation for data shar-
ing in both application settings. Through profiling we find
that even in the native Linux environment, the applications
spend significant amounts of time on data sharing (9.2% for
Lighttpd and 23.1% for Memcached). On spatially isolated
TEEs, data sharing will take an even much larger portion of
time due to the need for extra encryption-decryption.

7 Related Work

ELASTICLAVE draws attention to a single point in the TEE
design space, namely the memory model and its impact on
memory sharing. The predominant model, spatial isolation, is
adopted by Intel SGX [40], TrustZone [7], AMD SEV [30,31],
and so on. ELASTICLAVE explains the conceptual drawbacks
of this model and offers a relaxation that enables better per-
formance. Intel SGX v2 follows the spatial isolation design,
with the exception that permissions and sizes of private re-
gions can be changed dynamically [39, 64]. Thus, it retains
the all-or-none trust division between enclaves as in v1.

A range of TEE designs have shown the promise and feasi-
bility of enclave TEEs [15, 19, 22, 35, 53, 57]. Several works
have proposed security and compatibility improvements over
the original TEE design [16, 17, 24, 27, 34, 39, 45, 64]. They
allow for better security, additional classes of applications,
better memory allocation, and hierarchical security protec-
tion. Nevertheless, they have not explicitly challenged the
assumptions and still adhere to the spatial isolation model.

Our temporal memory model may seem similar to mecha-
nisms in hypervisors and microkernels—for example, as used
in page-sharing via EPTs [20, 65], IOMMU implementations
for memory-mapped devices such as GPUs or NICs [37]. The
key difference is in the trust model. Hypervisors [11] and
microkernels [36] are entrusted to make security decisions on
behalf of VMs. In TEEs, the privileged software is untrusted
and enclaves make their own security decisions.

Emerging proposals such as Intel TDX [58], Intel MK-
TME [42], Intel MPK [43], and Donky [48] enable hardware-
enforced domain protection. However, they protect entire vir-
tual machines or groups of memory pages. Notably, they ex-
tend fast hardware support to protect physical memory of a
trust domain (e.g., from a physical adversary) but still adhere
to the spatial isolation model.

Similar to ELASTICLAVE, pass-by-reference avoids copy-
ing large amounts of data and is efficient (e.g., compared to
pass-by-value). It does so by allowing functions to access
the same data simultaneously. However, it is often imple-
mented with static permissions (Option 1 in Section 2.1) and
is prone to attacks. POSIX and System V allow processes
to set up shared memory regions (e.g., for IPC) albeit with
static permissions. Thus, importing these interfaces as-is to
TEEs is insufficient. For example, the POSIX interface is
unsafe because it ties access permissions to file descriptors



and any process can re-share the descriptors with other pro-
cesses without the owner’s knowledge. The owner cannot stop
such unwanted sharing, impose a local permission view, or
forcefully destroy a region. In summary, the ELASTICLAVE
interface is more secure than pass-by-reference and POSIX
in the context of an enclaved TEE.

8 Discussion

Current Limitations. The RISC-V specification limits the
number of PMP registers to 16 [47]. Since each PMP entry
protects one memory region, this fixes the maximum number
of simultaneous regions across all enclaves. Future RISC-V
implementations can increase the number of PMP entries,
orthogonal to ELASTICLAVE [3, 46]. Keystone, the basis of
our prototype implementation, supports page swapping of the
private memory. Swapping shared memory, however, has two
major challenges. First, it is necessary to adjust the accessi-
bility of the evicted page to accommodate the incoming data
that is being swapped into the memory. For this reason, an
enclave has to notify the security monitor before swapping
shared memory. This way, the security monitor can adjust the
PMP configuration accordingly. Second, when swapping in
or out a shared page, the security monitor must inform all of
its accessors so they can adjust their page tables. This implies
that the security monitor needs to directly handle data swap-
ping, otherwise an enclave may swap in shared data without
the knowledge of other enclaves. Our current implementation
does not support swapping the shared memory of an enclave.
We plan to address these challenges in future work.
SGX-Based Implementation. The ELASTICLAVE design is
not specific to Keystone or RISC-V and can be integrated into
other TEE implementations, including Intel SGX, Intel TDX,
AMD SEV, ARM TrustZone, and ARM Realms. For con-
creteness, we discuss the specific changes required to adopt
ELASTICLAVE into Intel SGX since its memory management
model is different. As in the Keystone-based implementation,
an SGX-based implementation needs to maintain the permis-
sion metadata. However, unlike Keystone, SGX tracks the
virtual address mappings of enclaves. This is because in SGX,
the OS manages virtual address mappings and would be able
to manipulate them to launch attacks if they were not moni-
tored. To detect such attempts, SGX keeps its own mappings
and performs checks for each enclave access. Specifically,
SGX stores the reverse address mappings (from physical ad-
dresses to virtual addresses) along with access permissions in
Enclave Page Cache Maps (EPCMs) [23,40]. It only supports
one virtual address per physical address and fixes the accessor
to be the owner enclave. To support ELASTICLAVE in SGX,
we can extend these data structures to allow multiple (enclave,
virtual address, permissions) tuples per physical address.

Implementing these changes in the SGX design can be non-
trivial and different from implementing our prototype system.

First, the SGX implementation of ELASTICLAVE will have
to involve the OS for operations that change enclave page
tables. For instance, after map or unmap, the hardware will
have to send the new mappings to the OS. Second, to enforce
the ELASTICLAVE memory protection, the implementation
must perform checks based on the aforementioned extended
data structures for every memory access. The ease of such
enforcement and the corresponding performance ramifica-
tions may not be the same as in our RISC-V design. Lastly,
SGX includes a Memory Encryption Engine (MEE) to pro-
tect EPC (Enclave Page Cache) pages from physical attacks.
Since the cryptographic keys used are not enclave-specific,
the MEE can directly protect ELASTICLAVE shared memory
regions without modifications. However, it is important to
ensure that all shared memory regions are fully within the
EPC and hence covered by the MEE. The above discussions
offer a starting point for adapting SGX to ELASTICLAVE. We
acknowledge that they are not comprehensive and a concrete
implementation merits a separate paper.

9 Conclusion

We present ELASTICLAVE, a new TEE memory model for en-
claves to selectively and temporarily share memory with other
enclaves and the OS. We demonstrate that ELASTICLAVE
eliminates expensive data copy and encryption-decryption op-
erations securely. Our ELASTICLAVE prototype on RISC-V
offers 1 to 2 orders of magnitude performance improvements
over the existing spatial isolation model.
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