
Secure Poisson Regression

Mahimna Kelkar∗

Cornell Tech
Phi Hung Le∗

Google
Mariana Raykova

Google
Karn Seth

Google

Abstract
We introduce the first construction for secure two-party com-
putation of Poisson regression, which enables two parties who
hold shares of the input samples to learn only the resulting
Poisson model while protecting the privacy of the inputs.

Our construction relies on new protocols for secure fixed-
point exponentiation and correlated matrix multiplications.
Our secure exponentiation construction avoids expensive bit
decomposition and achieves orders of magnitude improve-
ment in both online and offline costs over state of the art
works. As a result, the dominant cost for our secure Pois-
son regression are matrix multiplications with one fixed ma-
trix. We introduce a new technique, called correlated Beaver
triples, which enables many such multiplications at the cost of
roughly one matrix multiplication. This further brings down
the cost of secure Poisson regression.

We implement our constructions and show their extreme
efficiency. In a LAN setting, our secure exponentiation for
20-bit fractional precision takes less than 0.07ms with a batch-
size of 100,000. One iteration of secure Poisson regression
on a dataset with 10,000 samples with 1000 binary features
needs about 65.82s in the offline phase, 55.14s in the on-
line phase and 17MB total communication. For several real
datasets this translates into training that takes seconds and
only a couple of MB communication.

1 Introduction

Privacy preserving computation technologies aspire to en-
able a wide range of modern computations used to analyze
data, while providing strong privacy guarantees for the in-
put data, which is often partitioned across multiple parties.
Approaches based on cryptographic techniques for secure
multiparty computation (MPC) have maintained the invariant
of strong privacy guarantees while progressively supporting
more complex functionality. In recent years, such approaches
have taken on some of the most powerful available tools for

∗Part of this work was done during an internship at Google.

data analysis which come from machine learning (ML). These
tools bring functionalities with new levels of complexity to
be supported in secure computation.

Existing MPC systems that support ML computations
have mostly considered algorithms that aim to solve clas-
sification tasks, the most prominent of which are neural net-
works [4,19,24,28]. In this work, we focus on a different type
of computation: modeling Poisson processes. These processes
are used to represent counts of rare independent events which
happen at random but at a fixed rate. In such a process, the
rate of events can be characterized by an underlying Poisson
distribution. Poisson distributions are used to describe pro-
cesses across many life and social sciences. Some examples
include the number of bacteria over time in a petri dish, the
number of mutations of a strand of DNA of a certain length,
the number of losses and claims in insurance policies in a
certain period of time, and the number of purchases a user
makes after being shown online advertisements.

It is common to model response variables that follow the
Poisson distribution by assuming their dependence on a set
of explanatory (predictor) variables. Specifically, it is often
assumed that the logarithm of the expected response is some
linear combination of the explanatory variables. In this set-
ting, the relationship between a response variable and the
corresponding explanatory variables can be learned using
Poisson regression. When the explanatory variables represent
features which are conjectured to affect the counts, the regres-
sion model can be interpreted as uncovering the statistical
significance of the effect of different features on the response
variable. For example, Poisson regression has been used to
model the dependence of the mortality rate from lung cancer
on the age and smoking habits of people [13], the frequency at
which voters engage in political discussion as a function of the
method they use for voting (e.g., in person or by mail), their
demographics, political affiliations, news exposure and oth-
ers [25], the effect of age, gender, preexisting conditions such
as diabetes and obesity on the mortality rate from COVID-
19 [27], predicting the number of payment defaults in credit
scoring based on socio-economic characteristics [18], and the

number of purchases that users make influenced by online
advertisements they have been shown [26].

Traditionally, Poisson regression is performed by collecting
all the examples (observed response variable counts together
with the observed explanatory variable values), and perform-
ing training. However, in many of the above examples the
information reflected in the predictor variables comes from
different sources that hold health and financial data, which is
highly sensitive information that is often subject to privacy
regulations. Thus, while the final output model could be a use-
ful tool for drawing insights about the underlying processes
and events, providing the input data in the clear for the train-
ing is not an option. In this paper, we propose a solution that
enables the computation while keeping all the inputs hidden
from the parties performing the computation, revealing only
the final Poisson regression model.

We introduce a system for secure computation that enables
two parties who hold different parts of the training samples to
compute the final Poisson model. We assume the most general
setting where the two parties hold cryptographic shares of the
input training data, and obtain cryptographic shares of the re-
sulting model. This representation can capture any partition of
the input among the parties and also enables computation with
the output model that does not reveal the model parameters to
either party. Our new two party computation construction for
Poisson regression leverages several new constructions for
its building block components that offer improved efficiency.
These functionalities have numerous uses beyond Poisson
regression and thus are of independent interest as tools for
secure computation.

Secure Exponentiation. A key component of Poisson re-
gression involves the exponential (ex) function. This step
constitutes the nonlinear portion of Poisson regression and
is not part of existing MPC implementations for ML func-
tionalities. Nonlinear computations have traditionally been
very challenging for secure computation techniques, since
such techniques are generally better suited for evaluating lin-
ear functions or low-degree polynomials. Indeed, in existing
MPC frameworks for ML functionalities [4,19], the nonlinear
components of the computation (e.g., the logistic function or
the RELU function) are the core challenge that these works
solve, and they contribute the most significant part of the cost
of the final constructions. Adding to the challenge is the fact
these nonlinear functions work on real numbers, which are
quite difficult to support in MPC. Most approaches replace
the nonlinear function with an approximation such as a low-
degree polynomial or a piecewise linear function, which is
easier to evaluate in MPC. However, such approximations
could lead to significant degradation in the quality of the
learned model (i.e. higher model error compared to training
in the clear), and thus, the evaluation of the resulting construc-
tions needs to consider jointly efficiency and accuracy.

In our work, we present a new construction for secure fixed-
point exponentiation. It leverages a close approximation of the

exact function with high precision that enables a significant
efficiency improvement compared to existing constructions.
In particular, all existing secure exponentiation approaches
rely either on inaccurate polynomial approximations, or on
bit decomposition of the exponent, which comes with a signif-
icant computation and communication cost. Our techniques
avoid this multi-round computation step by leveraging ideas
that enable the parties to obtain approximate multiplicative
shares of the output only with local operations. We can control
the accuracy and failure probability by appropriate parameter
adjustment, only assuming knowledge of bounds on the input
range. These bounds arise naturally in the context of Poisson
regression. We introduce a new way to split the computation
of the exponentiation into computation that depends only on
the integer part of the exponent and computation that depends
only on the fractional part of the exponent. Furthermore, we
provide a novel way to combine the two computations with
only local operations to obtain multiplicative shares of the out-
put. Our only communication requirement is to transform the
multiplicative shares of the output of the exponentiation into
additive shares, which can be used for any further computa-
tion. For this, we leverage an existing protocol from Ghodosi
et al. [14] that relies on a small amount of offline precompu-
tation and a single round of online computation.

Since there are no prior works that consider (fixed-point)
exponentiation in the two-party semi-honest model, as com-
parison points, we consider state-of-the-art works that achieve
a similar functionality in the malicious setting [9,10] or in the
semi-honest setting for n ≥ 3 parties using a floating-point
representation [7]. Although the comparison is not direct (see
Section 7.1 for details), our protocol achieves orders of mag-
nitude improvement on both the online throughput and the
offline cost which indicates the possibility of substantial gains
even when comparing in the same setting. In terms of accu-
racy, we can tune the parameters of our construction so that
the output is arbitrarily close to the “true” exponentiation on
the values in the clear without significant efficiency penalty
(for example we can go from error 0.006% to error 0.0002%
with 5 additional bits of precision). Our construction is so
efficient that the nonlinear component of our Poisson regres-
sion protocol is no longer the cost bottleneck, and no longer
degrades the quality of the computation, which stands in stark
contrast to other works in the area of secure ML.

Optimized Secure Matrix Multiplication. Poisson regres-
sion makes extensive use of matrix multiplications. For secure
multiplication on shared values, a well-known work [11] uses
precomputed random Beaver triples followed by a single on-
line communication round. In similar fashion, state of the art
techniques for secure matrix multiplication [19] generalize
Beaver triples to matrices and optimize the online communica-
tion and amount of preprocessing required; only one (matrix)
Beaver triple is required for each matrix multiplication.

We make the observation that the matrix multiplication
operations used in the Poisson regression training have a spe-

cific structure that can be exploited to further optimized the
communication cost of the matrix multiplications: the same
matrix X is used in many multiplications with many differ-
ent matrices Yi. While we can use independently generated
Beaver triples for each multiplication, we show a more effi-
cient way to precompute multiplication triples which takes
advantage of the structure of the online matrix multiplica-
tions. We call these correlated Beaver triples, and they enable
multiple online multiplications with the same matrix.

Using correlated Beaver triples results in improvements
in the online phase: the communication cost is reduced by
up to a factor of (n+ 1) (where n is the number of training
samples; see Section 5). Thanks to our very efficient secure
exponentiation, the dominant cost (more than 90% for both
computation and communication) in the secure Poisson re-
gression protocol comes from secure matrix multiplication
operations. Consequently, the use of correlated Beaver triples
translates directly to a significant overall improvement of the
cost of the whole secure Poisson regression protocol.

Experimental Results. We implemented all our construc-
tions and provide detailed benchmarking. Our secure exponen-
tiation protocol achieves significant efficiency improvements
over existing approaches. Our implementation uses 127-bit
modulus for the computation field, which suffices for our Pois-
son regression evaluation. For this modulus, in a LAN setting
with 1.5GB/s bandwidth, secure exponentiation for shared
exponents with 20-bit precision takes less than 0.07ms when
100K evaluations are batched for communication. SCALE-
MAMBA [10], which offers malicious security but is our most
relevant point of comparison, uses a larger 245-bit modulus
and a 40-bit precision, partly motivated by numerical insta-
bility for smaller sizes. Our construction does not have such
instabilities and achieves online throughput that is 200x more
efficient. The improvement in the offline phase is even greater,
where our protocol requires 2000x less offline preprocessing
and has a 500,000x improvement in offline computation.

We evaluate our secure Poisson regression implementa-
tion using three real datasets: Somoza’s data on infant and
child survival in Colombia, time to Ph.D. data, and data on
the three-year survival status of breast-cancer patients [1].
We further evaluate the scalability of our system using larger
synthetic datasets. The accuracy of our secure regression is
essentially identical to that of plaintext computation of the
regression. In our LAN setting, the total training (with 1000
iterations) for each of the three datasets takes less than 8s
in the online phase, 120s in the offline phase, and 121MB
total communication. The computation and communication
overhead for our construction scales roughly linearly with
the size of the training data. For a dataset with 10,000 sam-
ples with 1000 binary features, and evaluation with a 127-bit
modulus and 20-bit fractional precision, one training itera-
tion requires 65.82s in the offline phase, 23.73s in the online
phase and 17MB total communication. We also estimate the
efficiency for secure Poisson regression for datasets used to

predict COVID-19 case fatality rate, credit default rates and
ad campaign conversion rates (see Section 8).

2 Preliminaries and Background

Basic notation. Z denotes the integers and R denotes the
real numbers. ZN denotes the ring of integers modulo N. For a
prime q, Fq denotes the field with q elements, and F×q denotes
its multiplicative group. We use bold uppercase letters (e.g.,
M) to denote matrices and bold lowercase letters (e.g., u,v) to
denote (row) vectors. Throughout the paper, e denotes Euler’s
constant. In some places, we abuse function notation slightly,
and write f (u) to denote the vector resultant from applying f
to each element in u separately.

2.1 Poisson Regression and Gradient Descent

Poisson regression. Regression is a common statistical tech-
nique to learn a function g(xi)≈ yi, given n training samples
xi (each with m features), and corresponding output labels
yi. Different forms of regression model different classes of
functions g. For example, machine learning has extensively
used linear regression (to model linear outputs) and logistic
regression (to model binary outputs).

When the response variable y is count or rate-based (rather
than continuous), using Poisson regression makes more sense.
For Poisson regression, the expected response is modeled as a
Poisson distribution, and therefore, g(xi) = e〈θ,xi〉, where θ is
the coefficient or weights vector, and 〈·, ·〉 is the dot product.
Rate-data can be modeled by an extra multiplicative factor ti
denoting the time “exposure” for each sample over which the
response variable was computed.
Gradient descent. Gradient descent is a standard machine
learning techniques used to train a model iteratively. A model
can be defined by a set of parameters θ = (θ1, · · · ,θm). To
learn the model parameters from data, the algorithm iteratively
attempts to minimize a predetermined convex function. At
each step, the parameters are updated based on the gradient.

In this paper, we focus specifically on Poisson regres-
sion with exposure, which allows for modeling of rate-based
data. For this, training data is provided as (X,Y,T), where
X ∈ Rn×m contains data for the explanatory variables, Y ∈
(R+)n×1 contains data for the response variable, and T ∈
(R+)n×1 is the exposure data. n is the number of training sam-
ples and m is the number of features (or explanatory variables).
Poisson regression attempts to learn model parameters θ, by
minimizing −L(θ|X,Y,T) where L(·) is the log likelihood
function. For this, the gradient will be computed as:

∂L(θ|X,Y,T)
∂θ

=
n

∑
i=1

xi(yi− tie〈θ,xi〉)

where (xi,yi, ti) is the ith data point. The training will now
update the parameters iteratively. For the (k+1)th iteration,

θ
(k+1) is computed as follows:

θ
(k+1) = (1−β)θ(k)+αXT

(
Y−T◦ eXθ

(k)
)

where the exponential function is applied to each element in
Xθ

(k), ◦ is the Hadamard (element-wise) product and the con-
stants α and β denote the learning rate and the regularization
parameter respectively. θ

(0) is usually initialized either as the
zero vector, or with random weights.

2.2 Secure Computation Functionalities
Secure computation protocols enable functionalities where
parties can compute a function on their joint private inputs
in a way that only the final output is revealed to them. Our
protocol constructions are in a two-party setting and provide
semi-honest security [15], i.e., the parties are assumed to
follow the prescribed protocol. We denote the two parties by
P0 and P1. We use JxKZN to denote an (additive) sharing of x
over ZN . We drop the superscript when it is clear from context.
We write JxK= (JxK0 ,JxK1) where P0 holds JxK0 and P1 holds
JxK1 such that JxK0 + JxK1 = x mod N. The sharing is chosen
randomly, for example by first choosing JxK0 uniformly at
random in ZN and then assigning JxK1 = x− JxK0 mod N.

We use the notation F(JxK ,JyK) to denote that P0 and P1
engage in a computation of some functionality F , with P0
contributing JxK0 and JyK0 as input, and P1 contributing JxK1
and JyK1 as input, with each party receiving its corresponding
secret shares of the result as output.
Multiplication using Beaver triples. Given JxK and JyK
(over ZN), a common technique to compute JzK = JxyK is
Beaver’s multiplication trick [11]. For this, a randomly sam-
pled Beaver triple (JaK ,JbK ,JcK), where c = ab mod N is pro-
vided to the two parties. Now, P0 and P1 first locally compute
JuK = JxK− JaK and JvK = JyK− JbK. Next, they reconstruct
u and v by communicating their share to the other party. Fi-
nally, Pi can compute JzKi = i ·uv+uJbKi+vJaKi+JcKi. Note
that the same technique works for multiplying fixed-point
numbers. Each secure multiplication needs a preprocessing
of 3 ring elements per party, and has an online communica-
tion of 2 elements per party. We use Fmult(JxK ,JyK) to denote
executing the secure multiplication functionality.

An optimization in [19] shows that for secure matrix multi-
plication, given JXK and JYK where X has dimension n×m
and Y has dimension m×k, the preprocessing and online costs
per party are (nm+mk) rings and (n+m)k group elements
respectively. This involves sharing a matrix Beaver triple
(JAK ,JBK ,JCK) where A and B are matrices with the same
dimension as X and Y respectively, and C = AB mod N. We
use FmatMult(JXK ,JYK) to denote executing the secure matrix
multiplication functionality.

We use standard Ring-LWE based techniques to generate
the Beaver triples, and compress the real number of bits re-
quired for preprocessing and communication. A background
on Ring-LWE is provided in Appendix B.

3 Secure Computation over FP Rings

Poisson regression operates over the real numbers. When the
computation is done in the clear, one can leverage floating
point representation to achieve high precision. For secure
computation, while there are techniques that emulate floating
point representation [7], they are often expensive. A more
efficient approach that is commonly used is to adapt the actual
computation to work with fixed-point representation while
preserving accuracy. We adopt this approach in our work as
well and similarly to other works [19], we will compute over
fixed-point numbers mapped onto an integer ring.

Fixed-point ring. A fixed-point ringR is a tuple (Z2l , lx, l f)
where lx, l f are positive integers with l f ≤ lx≤ l−1.Rwill be
used to represent fixed-point numbers with at most l f (binary)
fractional bits, and whose absolute value is less than 2lx−l f .
Non-negative numbers will be in the rangeR+

∗ = [0,2lx) and
negative numbers will be in the rangeR−∗ (2l−2lx ,2l) in their
two’s complement representation.R∗ =R+

∗ ∪R−∗ is the total
part ofR wherein the fixed-point numbers are represented.

For a real r, with |r| < 2lx−l f , we use the hat operator, as
in r̂, to denote its representation in the ring R. Note that
r̂ =
⌊
2l f · r

⌋
when r≥ 0 and r̂ = 2l−

⌊
2l f · |r|

⌋
when r < 0. For

example, inR= (Z210 ,3,2), x = 1.25 will be represented in
R by x̂ =

⌊
22 ·1.25

⌋
= 5, and y =−1.25 will be represented

by ŷ = 210−
⌊
22 ·1.25

⌋
= 1019. Note that something like

z = 1.26 will also be represented by ẑ = 5 due to truncation.
Similarly, for a ring element x ∈R∗, we will use the under-

tilde operator, as in ˜x, to denote its canonical real number
representation. By canonical, we mean the real number which
gives no truncation error when represented in the ring. For
instance, in the previous example, ˜5 = 1.25 and not 1.26.

Secure operations. We define secure arithmetic operations
on values that have been secret shared between P0 and P1. We
distinguish between two types of operations: (1) Basic ring
operations are operations over shares in the ring Z2l treating
elements as integers; (2) Fixed-point or FP operations, on the
other hand, are operations that manipulate shares in the ring
Z2l , treating the underlying elements as fixed-point numbers.
For a given R = (Z2l , lx, l f), we will use JxKR or JxKZ2l to
denote additive shares of x ∈ Z2l . With this notation, we now
define some basic useful secure ring operations.

1. Basic operations:
• (Addition). Given shared values JxK and JyK,

Add(JxK ,JyK) outputs Jx+ yK.
• (Multiplication). Given shared values JxK and JyK,

Mult(JxK ,JyK) outputs JxyK.
Addition can be done non-interactively by each party lo-
cally adding its shares modulo 2l . Multiplication is modulo
2l and can be done in one round using Beaver triples.

2. Fixed-Point operations: These operations are for elements
in R∗. Intuitively, the functionality here can be thought
of as first retrieving the real numbers corresponding to

the ring elements (using the under-tilde operator), then
computing the result in real numbers, and finally casting
back into the fixed-point ring (using the hat operator).

• (FP Addition). Given shared values JxK and JyK,

FPAdd(JxK ,JyK) outputs
r

̂(˜x)+ (̃y)
z

.
• (Public FP Multiplication). Given JxK and a public ele-

ment c ∈R∗, PubFPMult(JxK ,c) outputs
r
(̂˜c)(˜x)

z
.

• (FP Multiplication). Given shared values JxK and JyK,
FPMult(JxK ,JyK) outputs

r
(̂˜x)(˜y)

z
.

• (Public FP Division). Given JxK and a public positive
integer c ∈ Z+, PubFPDiv(JxK ,c) outputs

r
(̂˜x)/c

z
.

• (FP Exponentiation). Given a public positive base
element b ∈ [0,2lx), and a shared exponent JxK,

FPExp(b,JxK) outputs
r
(̂˜b)(˜x)

z
.

Note that the basic addition and multiplication operations are
over Z2l but for FP operations, they are over reals. It is easy
to see though that Add and FPAdd provide the same function-
ality when the underlying shares represent valid fixed-point
elements. To avoid overflow for FP operations, we will re-
quire that the underlying real numbers represented by any FP
operation will still be smaller in absolute value than the 2lx−l f .
In practice, this can be done be choosing a large enough ring
to handle the range of values necessary for any computation.

Similar to the basic operations, FPAdd can be done non-
interactively, and FPMult can be done using Beaver triples.
Due to truncation, FPMult can have an error of at most 2−l f in
the underlying computation. Public fixed-point multiplication
and division can both be done non-interactively with an error
of at most 2−l f , and we provide protocols to do so in Ap-
pendix A. The exponentiation protocol is a novel contribution
of our paper and we provide the full details in Section 6.

We can also use a prime modulus q for our FP ring (instead
of 2l), embed fixed-point numbers into [0,2lx)∪ (q−2lx ,q) in
Fq, and define all of the above operations similarly over Fq.

Failure probability and approximation errors. The se-
cure computation of FP operations may come inbuilt with
some probability of failure as well as errors as a result of
truncation. We say that a protocol has failure probability pfail
and error ε if, except with probability pfail, the error in the un-
derlying fixed-point computation is bounded by ε. The failure
probability, similar to e.g., [19] can be made arbitrarily small
by increasing the gap between l and lx (see Appendix A).

Ring change. A final useful operation we introduce is
to switch between rings with different moduli. Given
N and N′, and a shared value JxKZN , the operation
RingChange(JxKZN ,ZN′) will output JxKZN′ , a sharing of x
(mod N′) in ZN′ . We will only require the operation for
N′ > N and when x is small (x < 2lx) which allows us to
do this without any interaction. The protocol is detailed in
Appendix A.

4 Secure Poisson Regression Protocol

Protocol input. Recall that for Poisson regression (with ex-
posure), each of the n training samples is of the form (xi, ti,yi)
where xi contains m features, ti is the exposure value, and yi
is the response output. We use X to denote the n×m matrix
of training samples, T to denote the n×1 vector of exposures,
and Y to denote the n×1 vector of response values. We as-
sume that all entries are already represented as fixed-point
elements and shared between the two protocol parties. We
use JXK ,JYK ,JTK to denote the sharings.

Protocol parameters. Prior to the protocol, we require P0
and P1 to agree on the following parameters: (1) A fixed-point
ring R= (Z2l , lx, l f); (2) An l bit prime q, and an exponent
bound (for the exponentiation protocol); (3) The regression
parameters α (learning rate), β (regularization term), and the
number of iterations K.

4.1 Basic Design

The goal of the regression protocol is to output a sharing of
a weights vector θ. For this, we use gradient descent, which
updates the weights at every iteration. Three variants are com-
monly used, which differ in the way the weights are updated:
(1) Standard, where the entire dataset is used for each itera-
tion; (2) Mini-batch, where a small random sample is used
for each iteration; and (3) Stochastic, where a single random
sample is used for each iteration. We chose to go with stan-
dard gradient descent in this paper, but note that our protocol
can be adapted for any variant.

Recall that in the update step of our gradient descent, the
weights for the (k+1)th iteration are updated as follows:

θ
(k+1) = (1−β)θ(k)+αXT

(
Y−T◦ eXθ

(k)
)

Let Jθ
(k)K denote a sharing of the weights vector after the

kth iteration. Parties start with Jθ
(0)K initialized randomly or

as shares of 0. Now, each iteration of our regression proceeds
as follows: (1) First, P0 and P1 compute the (fixed-point) ma-
trix multiplication JUK =

r
Xθ

(k)
z

. (2) Next, each element in
U is exponentiated (n exponentiations in total). Let JVK be
the sharing of the result after each term in JUK is exponenti-
ated; (3) Then, P0 and P1 compute an element-wise product
JWK= JT◦VK; (4) Next, P0 and P1 compute the (fixed-point)
matrix multiplication JZK =

q
XT (Y−W)

y
; (5) The remain-

ing computations (public multiplication by α), and addition
by (1−β)θ(k) can be computed locally, to end up with shares
of the updated weights θ

(k+1). Our protocol requires 4 rounds,
one for each of the first four steps. Figure 1 contains a detailed
description of our protocol. The element-wise product and
matrix multiplications, can be computed using the function-
ality Fmult and FmatMult respectively, and implemented using

Secure Poisson Regression

Setup. P0 and P1 agree on a fixed-point ring R, a prime q,
and parameters for the Poisson regression: learning rate α, a
regularization term β, number of iterations K.
Input. Two parties have shares (JXKi ,JYKi ,JTKi) over R.
X ∈ Rn×m is the feature matrix where n is the number of
samples and m is the number of explanatory variables, Y ∈Rn

is the label vector, T ∈Rn is the exposure vector.

Protocol.

1. Both parties initialize shares Jθ
(0)K to 0m.

2. For k = 1 to K do:

(a) The parties make a call to FmatMult, and set JUK ←
FmatMult(JXK ,Jθ

(k−1)K).
(b) The parties make a call to FFPexp on each element of JUK.

Let JVK← FFPexp(e,JUK).
(c) The parties make calls to Fmult on corresponding element

of the vectors JTK and JVK. Let JWK← Fmult(JTK ,JVK).
(d) The parties compute JSK← JY−WK locally.
(e) The parties make a call to FmatMult, and set JZK ←

FmatMult(
q

XT y
,JSK).

(f) The parties update their share for θ locally:

Jθ
(k)K← (1−β) · Jθ

(k−1)K+α · JZK

Output. Party Pi outputs its share Jθ
(K)Ki.

Figure 1: 2PC protocol for Secure Poisson Regression.

matrix Beaver triples as preprocessing. The fixed-point ex-
ponentiations are computed using the functionality FFPexp,
which we describe in detail in Section 6.

Basic protocol cost. From the previous description, we note
that each gradient descent iteration computes 2 matrix compu-
tations (of sizes (n×m,m×1) and (m×n,n×1)), 1 element-
wise product for n size vectors, and n secure exponentiations.
By using the matrix Beaver triples optimization from [19], a
total of 2nm+n triples are enough in the preprocessing stage
(per iteration). In addition to this, we utilize further optimiza-
tions for batched multiplication that substantially improve the
performance of our protocol, when amortized over multiple
iterations. Our key observation for this optimization is that
the matrix multiplications in each iteration have X, or XT as
one of the multiplicands. In other words, for K iterations, we
have K multiplications of the form (X, ·) and K of the form
(XT , ·). This allows us to batch together the multiplications
in separate iterations using correlated randomness where one
of the matrices in the Beaver triple is reused. We detail this
optimization in Section 5, and defer the security proof that it
does not leak any extra information about the multiplicands
to the full version [16].

The n secure exponentiations in each iteration require a
total preprocessing of 2n field elements per party, and a com-
munication of n field elements per party (see Section 6). Note

that all of the exponentiations are independent and can be
done in parallel in a single round.

We discuss additional considerations on efficiency like
choosing the appropriate learning rate and using mini-batches
for training in the full version [16].

Failure probability. The fixed-point multiplication, and ex-
ponentiation operations have a small failure probability, which
depends on the chosen parameters. We compute the overall
failure probability for our regression protocol, which will be
helpful to choose appropriate parameters for a given accept-
able failure probability.

Consider R = (Z2l , lx, l f), and Fq as parameters for our
regression protocol. Each fixed-point multiplication has a
failure probability of at most 2lx+1−l due to truncation. For
matrix multiplication between a (n×m), and a (m×k) matrix,
the failure probability is at most nk ·2lx+1−l (see [19]).

For each iteration of the regression, there are a total of
2(n+m) truncations for the multiplication steps (n each from
steps 2a and 2c, and m each for steps 2e and 2f), which add
up to a failure probability of (2n+ 2m) · 2lx+1−l . Addition-
ally, there are n exponentiations in step 2c, each of which
has a failure probability of at most 2lx+1/q (see Section 6
for details). Therefore, by the union bound, the total failure
probability of our regression protocol for K iterations is at
most K(2(n+m) ·2lx+1−l +n ·2lx+1/q). This dictates the pa-
rameter choices for the fixed-point ring and the prime field
required for an acceptable failure probability, say pfail < 2−40.
Note that the failure probability can be made arbitrarily small
by increasing l and q.

Standard Poisson regression. The secure regression proto-
col we described so far is for the general version of Poisson
regression with exposure. Standard Poisson regression does
not contain the exposure data (T). This means that for stan-
dard Poisson regression, the element-wise product between T
and eXθ

(k)
is no longer necessary. Therefore, we can reduce

one communication round, resulting in a 3-round protocol.
The other steps of our protocol remain exactly the same.

Secure Inference. A useful functionality, after the regres-
sion is complete, is to predict, or infer the value of the re-
sponse variable for future samples. Formally, given a sharing
JθK of the learned weights, the goal is evaluate a new sample
(JxK ,JtK), i.e., compute a sharing of the response y = exT θ.
We defer the protocol to the full version [16].

5 Optimized Batched Multiplication

We now describe our optimization for efficient computation
of many multiplications where one of the multiplicands stays
the same. More specifically, we want to compute K multiplica-
tions of the form XY j for secret shared matrices where X has
size n×m, and all Yi have size m× k. Pi is provided shares
JXKi ,JY1Ki , · · · ,JYKKi, and the goal now is to compute shares

of the multiplications JZ jK = JXY jK (for j ∈ [1,K]) more ef-
ficiently. For this, we will use correlated randomness across
the multiplications and therefore need a single matrix sharing
JAK for the X multiplicand. We prove that this can be done
securely in the full version [16]. Formally, our preprocessing
requirement is now JAK ,JB1K , · · · ,JBKK ,JC1K , · · · ,JCKK. If
X is large compared to the Y j (as is the case in Poisson re-
gression), this optimization is significant since we only need
one matrix to mask X across all multiplications. Note that we
can use the same batch multiplication technique to compute
the element-wise product in our protocol.

The structure of the correlated Beaver triples allows them
to be efficiently generated in the offline phase via the use of
Ring-LWE. We detail the generation protocol in Section 5.1.
Online cost improvement. Correlated Beaver triples im-
prove the cost of our protocol significantly. In the online phase,
since X−A only needs to be reconstructed once instead of for
each multiplication, the amortized online communication per
multiplication for our technique is 2nm

K +2mk ring elements,
compared to 2nm+2mk using standard matrix Beaver triples
from [19]. In the setting of Poisson regression, since k = 1
typically, this results in a n+1

(n/K)+1 factor improvement for the
online phase, which is very close to (n+1) when K is large.
For example, if the number of training samples n = 1000 and
the model is trained over K = 1000 iterations, the commu-
nication cost of the online phase is reduced by 500 times if
correlated Beaver triples are used.

5.1 Improving The Offline Phase
Without any need for optimization, the correlated Beaver
triples can be generated in the offline phase using the two
approaches from SecureML [19]: OT-based and additive ho-
momorphic encryption (AHE) based. The latter, which uses
Paillier encryption, requires 190x less communication than
the former, but is more expensive computationally. Experi-
ments from [19] show that the AHE-based approach is better
in WAN network, while the OT-based is 20-30x faster in LAN
setting (See Table 2 in [19]).

We show how to significantly improve triple generation via
the use of Ring-LWE. Our approach works for any ring ZN
(N = 2l in our case) and does not rely on packing techniques
for Z2l as in [22] (where the number of slots is only φ(m)/5,
resulting in 80% space being wasted) or on the embedding of
plaintext values in a larger prime field of length 2 · l+σ+2 as
in [23] (which increases the communication and computation
cost by at least (2+(σ+2)/l) times).

In more detail, to generate K correlated Beaver triples,
our protocol proceeds as follows: First, P0 and P1 sample
random matrices to be shares of A and B1, · · · ,BK . Let
the shares held by Pi be JAKi ,JB1Ki , · · · ,JBKKi. In order to
obtain the shares of C j = AB j, the parties need to com-
pute the shares of JAKi JB jK1−i as JAKi JB jKi can then be
computed locally by each party Pi (since JC jK = JAB jK =

q
JAK0 JB jK0 + JAK1 JB jK1 + JAK0 JB jK1 + JAK1 JB jK0

y
). We

propose two different ways to compute the shares of
JAKi JB jK1−i. The first approach works better when the num-
ber of training samples n is large while the second approach
works better when the number of explanatory variables m
is small. We benchmark the cost to generate triples using
both approaches in Table 3 (Section 7.2), and also compare to
the Paillier encryption based approach used in [19]. Overall,
both of our approaches are significantly better than Paillier
encryption in terms of both communication and computation.

Approach I. P0 encrypts each column of the the ma-
trix JAK0 separately using Ring-LWE and sends the en-
crypted columns to P1. Define JB jK1 = (b1 j, · · · ,bm j)

T , Ai

as the ith column of JAK0, and Ei as Encsk(Ai) for 1 ≤ i ≤
m. P1 uses the additive homomorphic properties of Ring-
LWE to compute the encryption D j = ∑

m
i=1 bi jEi + R j =

Enc(JAK0 JB jK1 +R j). P1 sends the ciphertexts to P0 who
decrypts them to obtain

q
JAK0 JB jK1

y
0 = JAK0 JB jK1 +R j

while P1 has
q
JAK0 JB jK1

y
1 = −R j. If the number of train-

ing samples n is much smaller than the length of the ci-
phertext (say N, the degree of the cyclotomic polynomial
used in the Ring-LWE scheme), P1 can pack multiple D j
into a single ciphertext to optimize communication. As-
suming N = 2n, D0 = Enc(d1, · · · ,dn,0, · · · ,0), and D1 =
Enc(d′1, · · · ,d′n,0, · · · ,0), we can produce the ciphertext D′1 =
Enc(0, · · · ,0,d′1, · · · ,d′n) by multiplying D1 with the plaintext
message (0, · · · ,0,1,0, · · · ,0) which is zero everywhere ex-
cept for the ith position. Now, D01 = D0+D′1 is the ciphertext
containing (b1, · · · ,bn,b′1, · · · ,b′n). Similarly, if t = N/n, we
can pack t ciphertexts D j into one ciphertext. The parties now
reverse roles to compute shares of JAK1 JB jK0, and finally
shares of AB j.

To analyze the efficiency of this approach, first notice that
each party sends m ciphertexts and receives K ·n/N cipher-
texts. Now, if log(q) is the bitlength of the Ring-LWE cipher-
text modulus, then the cost to generate K correlated Beaver
triples is 2(m+Kn/N)N(2log(q)) = 4(mN+Kn) log(q) bits.
When K is very large (�mN), the amortized cost per triple is
roughly 4n log(q) bits. For 127-bit input, we use a ciphertext
modulus with length log(q) = 295. For Paillier encryption,
the amortized cost per triple is 2(m+ n) log(q′) bits where
q′ = 6144 is the length of the Paillier ciphertext. Since m < n
is typical for training data, our protocol uses at least 10x less
bandwidth than the AHE approach from [19]. Besides the
smaller communication cost, our approach also provides sig-
nificant gains in the computation time. To multiply a constant
with a ciphertext in Ring-LWE we only need to perform mul-
tiplications over field of size 295 bits. However, if Paillier
encryption is used, an exponentiation in group of size 6144
bits needs to be computed which is much more expensive.

In terms of computational cost, our protocol requires m×K
multiplications between a scalar and a ciphertext and K(1−
n/N) shift operations.

Approach II. While the previous approach is efficient in
terms of communication, it results in a lot of wasteful com-
putation if the number of training samples n is much smaller
than the degree N of the cyclotomic polynomial used for Ring-
LWE. Our second approach therefore, will be geared towards
settings when n� N.

For this, P0 first encrypts each row of the matrix B =
(JB1K0 , · · · ,JBKK0) separately and sends the ciphertexts E j←
Encsk(B j) for 1 ≤ j ≤ m to P1. Now, P1 uses the additive
property of Ring-LWE to compute Di = ∑

m
j=1 ai jE j +Ri for

1 ≤ i ≤ n, where Di is the encryption of the ith row of the
matrix JAK1 B+R and R is a random matrix sampled by P1,
and sends the ciphertexts to P0. Note that when K is much
smaller than N, P1 can pack multiple ciphertexts into one
before sending them back to P0 to reduce the communication
cost. The packing is done by simply shifting the ciphertexts
as described in the first approach. P0 now decrypts the cipher-
texts to obtain

q
JAK1 JB jK0

y
0 = JAK1 JB jK0 +R j, while P1

sets
q
JAK1 JB jK0

y
1 =−R j. Similar to the first approach, the

two parties now reverse roles to compute shares of JAK1 JB jK0,
and finally shares of AB j.

Assume K� N (in our experiments, K = 1000 and N =
214). To analyze the efficiency of this approach, first no-
tice that P1 sends m ciphertexts to P1 and receives n ·K/N
ciphertexts. The communication cost to generate K corre-
lated Beaver triples is therefore 2(m+n ·K/N)N(2log(q)) =
4(mN +nK) log(q) bits. When mN < nK (for example, n =
1000,m = 10,N = 214,K = 1000), the amortized cost for one
triple is less than 8n log(q) bits, which is around 5x cheaper
than the AHE-based approach from [19]. In terms of compu-
tation, our protocol requires n×m multiplications between a
scalar and a ciphertext and n(1−K/N) shift operations. The
second approach is faster than the first one when n < K.

In our secure Poisson regression protocol, we also need to
generate the correlated Beaver triples for the multiplication
between shares of scalars Ti and Vi where Ti is fixed during
the training process. This is equivalent to having n=m= 1, so
the second approach will be used to generate these correlated
Beaver triples.

6 Secure Fixed-Point Exponentiation

In this section, we detail our novel secure fixed-point expo-
nentiation protocol. To simplify our analysis, our protocol
will mirror FFPexp functionality (Figure 2) rather than the pre-
viously defined FPExp operation. Note that due to truncation
errors, the two functionalities are not identical. However, we
will show later (in Section 6.4) that the result computed by
FFPexp is close to the actual fixed-point exponentiation re-
sult. Similar to the FPExp operation, the functionality FFPexp

will take as inputs a public base and a secret shared expo-
nent. Since we are working in a fixed-point ring, we will con-
sider our inputs to be the fixed-point representations rather

than the real numbers themselves. Given a fixed-point ring
R = (Z2l , lx, l f), a public base b ∈ R∗, and a shared expo-
nent JxK, FFPexp(b,JxK) will compute a sharing of something

“close” to (̂˜b)(˜x). We benchmark our protocol and compare it
to existing works in Section 7.1. A more in-depth comparison
to related techniques is also provided in the full version [16].

6.1 Protocol Construction

It is straightforward to construct a protocol that realizes
the FFPexp functionality. First, we note that the PubFPMult,
FPAdd, RingChange, and PubFPDiv operations used in steps
1, 2, 4, 9, and 10 of FFPexp can all be computed by locally
manipulating the shares. Steps 3, 5 and 6 are also purely local
computations. The only point at which communication will
be necessary is to retrieve an additive sharing of y′ (steps 7, 8).
Effectively, here, P0 and P1 need to go from a multiplicative
sharing of y′ ∈ Fq to an additive sharing of the same y′.

To accomplish this, we use a 2-party variant of the efficient
MTA (multiplicative to additive) protocol from Ghodosi et
al. [14]. Suppose that P0 and P1 hold multiplicative shares m0
and m1 of a secret s in Fq. The protocol requires a tuple (αi,βi)
of preprocessed values (in Fq) such that α0α1 + β0β1 = 1.
Now, the MTA protocol proceeds as follows: First, P0 and P1
simultaneously send v0 = β0m0 and v1 = α1m1 respectively
to the other party. Then, P0 and P1 can compute a0 = α0m0v1
and a1 = β1m1v0. Note that a0 and a1 are the required ad-
ditive shares of s since a0 +a1 = α0m0α1m1 +β1m1β0m0 =
m0m1(α0α1 +β0β1) = s. [14] also shows that the shares are
individually uniformly random.

The source of the preprocessed values is not provided
in [14] but they are nevertheless easy to compute even with-
out a trusted dealer. For this, first, P0 samples u0,w0 and P1
samples α1,β1 uniformly at random from F×q . Next, the two
parties can securely compute r = u0α1 +w0β1, and resample
if r = 0. The probability that a resample is necessary is at most
1/(q−1). Finally, P0 can set α0 = u0r−1 and β0 = w0r−1,
where r−1 is the multiplicative inverse of r in F×q . Notice now,
that α0α1 + β0β1 = rr−1 = 1, as required. Note that since
the resample probability is negligible, the distribution of r is
negligibly close to uniformly random.

Since the only communication is through the MTA proto-
col, the security of our protocol securely realizing the FFPexp

functionality is a direct consequence of the security of the
MTA protocol. In total, our protocol requires only one round,
and a single field element sent by each party.

6.2 Protocol Details

We now describe the main technical components of why our
protocol is a useful proxy for computing the fixed-point expo-
nentiation. We defer the concrete error analysis to Section 6.4.
We begin with a simplified version of our protocol where

Secure Fixed-Point Exponentiation Functionality FFPexp

Public Parameters. P0 and P1 agree on a fixed-point ring R= (Z2l , lx, l f), an l-bit prime q < 2l , and an exponent bound A ∈ Z+.
Input. P0 and P1 have shares JxK ∈R∗, and a public real base b ∈ R+, satisfying˜x log2(b)> 1−A

Functionality.

1. Let
q

x′
y
← PubFPMult(JxK , ̂log2(b)) // Convert to base 2 exponentiation

2. Let JzK← FPAdd(
q

x′
y
, Â) // Make exponent > 1

3. Let (zint
i ,zfrac

i)←
(⌊

JzKi /2l f
⌋
,(JzKi /2l f)− zint

i

)
// Split into integer and fractional parts

4. Let (zint
0 ,zint

1)← RingChange((zint
0 ,zint

1),Zq−1) // RingChange from Z2l−l f to Zq−1

5. Let (vint
i ,vfrac

i)← (2zint
i mod q,2zfrac

i) // Exponentiate both parts

6. Let vi←
(

vint
i ·
⌊

2l f vfrac
i

⌋)
mod q // Get each party’s local share

7. Let y′← v0v1 mod q // Combine shares of both parties

8. Create a random additive sharing
q

y′
y

in Fq // Convert to additive shares

9. Let JyKFq ← PubFPDiv(
q

y′
y
,2l f +A) // Divide by the remaining factor

10. Let JyKZ2l ← RingChange(JyKFq ,Z2l) // RingChange from Fq to Z2l

Figure 2: Functionality FFPexp

˜b = 2, and the exponent satisfies˜x > 1, and handle other ex-
ponents and other (positive) bases later.

Our strategy is as follows: (1) First, we split the exponen-
tiation into two parts: an integer part and a fractional part.
(2) Next, each part is exponentiated separately (and locally)
to get multiplicative shares of the final result (along with an
extra factor). (3) We then use a single round of interaction
to convert the multiplicative shares to additive shares. (4) Fi-
nally, each party can locally remove the extra factor to obtain
additive shares of the final result. We detail each step below.

Splitting the exponent. Let JzK be a sharing of the fixed-
point exponent, where P0 holds JzK0 and P1 holds JzK1.
We use z here (instead of x) to follow along with func-
tionality FFPexp, and standardize the notation for a gen-
eral base, since the first two steps there reduce the prob-
lem to a base 2 exponentiation (of a positive exponent).
The party Pi first splits its share JzKi as (zint

i ,zfrac
i) where

zint
i =

⌊
JzKi /2l f

⌋
and zfrac

i = JzKi /2l f − zint
i = (JzKi mod

2l f)/2l f . Notice now that z = (JzK0 + JzK1 mod 2l) =
2l f
(
(zint

0 + zint
1 mod 2l−l f)+(zfrac

0 + zfrac
1)

)
. Therefore,

2̃z =
(

2(z
int
0 +zint

1) mod 2l−l f
)
·
(

2zfrac
0 +zfrac

1

)
This allows us to exponentiate the integer and fractional parts
separately and combine them at a later step. Note that the two
integer and fractional exponent shares may not always sum up
to the actual integer and fractional parts of˜z respectively. This
is because the two fractional shares could add up to more than
1, leaving the integer shares to sum to

⌊
z/2l f

⌋
−1 mod 2l−l f .

Furthermore, our integer exponentiation requires the exponent

to be positive. This leads to our requirement of˜z > 1. We will
relax this assumption later.

Integer exponentiation. First, we observe that JwK0 = zint
0

and JwK1 = zint
1 form a sharing of w = (zint

0 + zint
1 mod 2l−l f)

over the ring R= Z
2l−l f . Denote this sharing by JwKR. Now,

we can use existing integer ring exponentiation techniques
(such as [8,21,29]) to compute 2w. These techniques however
require a few rounds of communication even for a public base.
Instead, here, we will describe an alternative method that can
be done locally in a way that will seamlessly combine with
the fractional exponentiation part.

For this, we assume that the parties have agreed on an l-bit
prime q (i.e., 2l−1 < q < 2l). We will first convert the shar-
ing of w in R to a sharing in Zq−1 using the RingChange
operation. Note that the ring size increases if at least 1 frac-
tional bit is present. Recall that since w is positive (from our
exponent assumption), with probability (1−2lx/q), the new
sharing JwKZq−1 will satisfy w+(q−1) = JwKZq−1

0 + JwKZq−1
1 .

Now, the two parties can exponentiate their shares locally
(mod q) to directly get a multiplicative sharing of 2w. This
works since,(

2JwK
Zq−1
0 mod q

)
·
(

2JwK
Zq−1
1 mod q

)
mod q

=
(
2w+q−1) mod q = 2w mod q

where the last step is due to Fermat’s little theorem. Let

vint
0 = 2JwK

Zq−1
0 mod q and vint

1 = 2JwK
Zq−1
1 mod q be the final

multiplicative shares (in Fq) of 2w held by P0 and P1.

Fractional exponentiation. Let zfrac
0 and zfrac

1 be the frac-
tional exponents held by P0 and P1 respectively. Notice
that if both parties locally exponentiate (in R) their shares,
they would end up with multiplicative shares (in R) of the
fractional exponentiation result. Specifically, if Pi computes
vfrac

i = 2zfrac
i , then vfrac

0 · vfrac
1 = 2zfrac

0 +zfrac
1 . To allow for seam-

less integration with the integer exponentiation part, we have
Pi later compute

⌊
2l f · vfrac

i
⌋
. A crucial observation here is that

since 20 ≤ vfrac
i < 21,

⌊
2l f · vfrac

i
⌋

is small and positive, and
therefore it can also be viewed as an element in Fq. Further-
more, the multiplication (now in Fq), will not wrap around the
modulus q. This will allow vfrac

i and vint
i to be combined easily.

Note that the product will include an extra 2l f factor (apart
from the standard fractional fixed-point multiplier). Due to
truncation, the extra factor is necessary when first combining
the integer and fractional parts and will be divided out later.
This will become evident in our error analysis.
Combining the two parts. At this stage, Pi holds the result
of the integer exponentiation vint

i , and the result of the frac-
tional part vfrac

i . Let di =
⌊
2l f · vfrac

i
⌋
. Ignoring errors due to

truncation for now, we have:

(vint
0 · vint

1 ·d0 ·d1) mod q

≈
(

2(z
int
0 +zint

1) mod 2l−l f
)(

22l f
)(

2zfrac
0 +zfrac

1

)
mod q

= 22l f 2̃z mod q = 2l f (̂2̃z) mod q

This means that barring any truncation errors, if Pi computes
y′i = vint

i ·di mod q, then y′0y′1 mod q≈ (2l f)(̂2̃z). Now, P0 and
P1 convert the multiplicative shares of y′ = y′0y′1 to additive
ones through the MTA protocol which requires one round of
interaction. The leftover 2l f factor can be divided out through
local computation using PubFPDiv. Finally, both parties can
locally use the RingChange protocol to convert their shares
back to Z2l . Note that this conversion is once again from a
smaller to a larger ring since q < 2l . We will bound the error
resultant from truncation in Section 6.4.
Working with bases other than 2. Our Poisson regres-
sion usecase requires secure base e exponentiation, but so
far our protocol only works for base 2. To make it work
for any positive base b, we first observe that given a real
exponent u, bu = 2u log2(b). Consequently, as the first proto-
col step, the sharing JxK of the (base b) exponent in R will
be converted to a sharing JzK, of the equivalent base 2 ex-
ponent, where (˜z) = (˜x) log2(b). This can be computed as
JzK = PubFPMult(JxK , ̂log2(b)) and requires no interaction.
Working with exponents ≤ 1. We initially required our
fixed-point exponent to be greater than 1 since this guaran-
tees correctness for the integer ring exponentiation. To handle
other exponents, we will assume that there is an agreed upon
exponent bound A ∈ Z+, such that for base b and exponent
sharing JxK, it holds that (˜x log2(b))> 1−A, i.e., the most neg-
ative exponent for base 2 exponentiation still has an absolute

value of less than A−1. Suppose that Jx′K is the sharing of
the exponent after converting to a base 2 exponentiation. We
now need to ensure that ˜x′ > 1. This can be done by adding A
to the exponent, or equivalently, adding Â to the sharing using
FPAdd to get a new sharing JzK. At the end of the protocol,
the extra 2A factor will be divided out. We note that since the
2A factor will be present in intermediate steps, bothR and Fq
will need to be large enough to accommodate it.

Protocol cost and other considerations. Our exponentia-
tion protocol has a total online cost of 2 Fq elements (1 per
party), and a preprocessing cost of 4 Fq elements (2 per party).
We note that our protocol can easily be adapted to working
solely in the field Fq (with appropriately defined fixed-point
representation), rather than switching between our defined
fixed-point ring and Fq. This design is simpler but usually
much slower since common operations like multiplication,
truncation etc., are much faster over a ring Z2l , as compared
to a field. Therefore, for our purpose, it is far more cost effi-
cient to work mostly in Z2l (and Z

2l−l f), and only switch to
Fq inside of the exponentiation subprotocol.

Assumption on the exponent bound. We emphasize that
our assumption of a minimum allowable exponent is not un-
reasonable in the context of fixed-point exponentiation. Given
l f fractional bits, 2(−z) where z > l f is already not repre-
sentable in the fixed-point ring. Consequently, this gives us
a natural bound on how negative the exponent can be for the
computation to even make sense. Of course, a tighter bound
A can be chosen if appropriate. This observation allows our
protocol to be orders of magnitude faster than prior work,
since it does not require an expensive bit decomposition to
first detect whether the exponent is negative; we can simply
add the bound to all exponents to always work with positive
exponents for the main protocol. One caveat is that we lose
the ability to detect if our predefined bound has been violated
without resorting to a bit decomposition, and our protocol may
produce incorrect results when the bound is incorrectly de-
fined or is exceeded during protocol execution. We point out
though, that this assumption is not unlike a standard assump-
tion of a large enough ring modulus to hold the fixed-point
computations, and similar assumptions appear in [4, 19].

Failure probability. We analyze the total failure probability
of our base 2 exponentiation protocol. First, suppose that the
(positive) base 2 exponent z is secret shared as (JzK0 ,JzK1).
With probability at least 1−2lx−l , we have JzK0+JzK1 = z+2l ,
i.e., the two shares wrap around Z2l . When this happens, the
integer components will also wrap around Z

2l−l f , and after the
RingChange to Zq−1, zint

0 and zint
1 will wrap around Zq−1 (see

Appendix A). Next, after the integer and fractional parts are
exponentiated combined, and converted from multiplicative
to additive shares, the random additive sharing of y′ in Fq will
also wrap around Fq with probability at least 1− 2lx

q . Finally,
the later PubFPDiv and RingChange back to Z2l steps will
work smoothly when the sharing of y′ wraps around Fq.

Therefore, using the union bound, we can bound the
total failure probability of the exponentiation protocol as
2lx−l + 2lx/q < 2lx+1/q, since we use q < 2l . Given the ex-
ponent bound A, choosing lx = 2A + 2l f is sufficient, and
therefore, we can rewrite the bound as 22A+2l f +1/q. Note that
the failure probability can easily made as small as necessary
by increasing the size of Fq, and our fixed-point ring. For ex-
ample, to achieve pfail < 2−40, with l f = 15 bits of precision,
and A = 5, roughly an 81-bit modulus will be required.

6.3 Other Considerations

Alternate 2-round protocol. We also describe an alternate
2-round variant of our exponentiation protocol. Here, instead
of combining the integer and fractional exponentiation shares
locally first, the MTA protocol is used to retrieve additive
shares of the integer and fractional result separately. Note
that this can be done simultaneously in 1 round. Finally, in
the second round, shares of both results can be combined
through a single secure multiplication. In total, 8 Fq elements
are transmitted in the online phase, and 14 Fq elements are
required for preprocessing. While the communication cost
is larger than the previously described 1-round protocol, one
upshot of this construction is that it can tolerate a smaller ring
size. Recall that in the 1-round protocol, the full result along
with an extra 2l f factor needs to fit in the ring. This is no
longer necessary for the 2-round protocol and depending on
the usecase and the number of fractional bits used, the trade-
off may be acceptable. For our regression usecase however,
there are other constraints that increase the size of the fixed
point ring. Furthermore, in practice, the computational gain
as a result of a smaller ring size (in the order of microseconds
for our construction), will almost certainly be overshadowed
by the extra communication round (usually in the order of
milliseconds). Therefore, we use the 1-round protocol that
optimizes for communication cost.
Malicious security. Although our secure fixed-point expo-
nentiation protocol operates exclusively in the semi-honest
setting, we comment briefly on the challenges of extending it
to a maliciously secure version. One possible technique is for
the protocol parties to operate on authenticated shares [20]
and use generic zero-knowledge proofs to prove that each
party performs their steps correctly. However, doing so would
likely reduce the efficiency gains of our protocol substantially.
In particular, a key step in our protocol is separating the expo-
nentiation into integer and fractional parts, following which
the fractional part can be exponentiated locally in real num-
bers (or floating point) and still be seamlessly combined with
the integer exponentiation part. In the malicious setting, it is
expensive to prove that these steps were performed correctly,
and it may be more efficient to use a polynomial approxima-
tion instead for the fractional exponentiation, together with
cut-and-choose or ZK techniques to prove correctness. We
leave these explorations for future work.

6.4 Error Analysis
We will now compute a bound on the error of our exponen-
tiation protocol for base 2. For this, we will compute the
difference between the result computed by FFPexp and the
actual exponentiation (in real numbers).

Let JzK be a sharing of the (base 2) exponent in the fixed-
point ringR= (Z2l , lx, l f), that computes the exponentiation
2(˜z) (in R). First, we note that the integer exponentiation pro-
duces no error; the only error results from the truncation in
the fractional part and its subsequent combination with the
exponentiation of the integer part. Let zint

i and zfrac
i denote the

integer and fractional parts of the underlying fixed-point of
the share JzKi, after (zint

0 ,zint
1) has undergone a RingChange to

become a sharing in Zq−1. Note that no error is added by the
RingChange. It is easy to see that the true computation 2̃z can
be written as 2(z

int
0 +zint

1 mod q−1)2zfrac
0 2zfrac

1 .
Following FFPexp, we first compute vint

i = 2zint
i mod q,

and vfrac
i = 2zfrac

i , and combine them to get vi = (vint
i ·⌊

2l f vfrac
i
⌋
) mod q. Since vfrac

i is a positive real, suppose
that vfrac

i = di + εi, where 0 ≤ εi < 2−l f . In other words,
εi is the part not representable in l f fractional bits. Now,
vi =

(
vint

i ·2l f · (vfrac
i − εi)

)
mod q. Consequently,

y′ = 22l f · vint
0 · vint

1 · (vfrac
0 − ε0) · (vfrac

1 − ε1) mod q

= 22l f ·2(zint
0 +zint

1 mod q−1) · (vfrac
0 − ε0) · (vfrac

1 − ε1)

= 22l f [2(z
int
0 +zint

1 mod q−1)

(vfrac
0 vfrac

1 − ε0vfrac
1 − ε1vfrac

0 + ε0ε1)]

= 22l f [2(˜z)+2(z
int
0 +zint

1 mod q−1)(−ε0vfrac
1 − ε1vfrac

0 + ε0ε1)]

where the mod q can be removed from step 2 onwards, since
Fq is large enough to accommodate the entire intermediate
result. Now, 2(z

int
0 +zint

1 mod q−1) = 2(˜z)/(vfrac
0 · vfrac

1), and 1 ≤
vfrac

i < 2 and therefore,

22l f

[
2(˜z)−2(˜z) ·2−l f

(vfrac
0 + vfrac

1)

vfrac
0 vfrac

1

]
< y′ < 22l f

[
2(˜z)+2(˜z) ·2−2l f

]
This gives,

2l f 2(˜z)(2l f −2)< y′ < 2l f 2(˜z)(2l f +2−l f)

Now, y← PubFPDiv(Jy′K ,2l f) results in an additional poten-
tial error of at most ±1. That is,

−1+2(˜z)(2l f −2)< y < 1+2(˜z)(2l f +2−l f)

In other words, the computed fixed-point number˜y = y/2l f

differs from the real value 2(˜z) as,∣∣∣̃y−2(˜z)
∣∣∣< 2−l f (2 ·2(˜z)+1)

To put this in perspective, a computation of 210.125 ≈
1116.68 in a fixed point ring with l f = 15, will result in a
maximum possible error of 0.068, or at most 0.006%. With
l f = 20, the maximum error reduces to 0.0002%. This should
be more than reasonable for most practical settings, and in-
deed fits our regression usecase well, since regression is resis-
tant to small errors. Furthermore, we emphasize that the error
can always be made arbitrarily small by increasing the num-
ber of fractional bits available for the computation. Also note
that this error is achieved for the worst possible sharing of the
exponent, and may be much smaller for a random sharing.
Error dependence on actual value. The astute reader
might observe that the above computed error (in the fixed-
point ring) is bounded by a small multiple of the actual real
number result 2̃z. We highlight that this is not unlike the error
of chaining two truncated secure multiplications. For example,
suppose that JâK ,Jb̂K,JĉK ,Jd̂K are sharings held by P0 and P1
of fixed-point numbers a,b,c,d. Recall that secure multiplica-
tion can result in an error of at most±1 in the fixed-point ring.
This means that the secure multiplication of a,b can result in
a sharing of âb+1, while the secure multiplication of c,d can
result in a sharing of ĉd+1. At this point, if the two resultant
shares are also multiplied, the complete result can be at most
âbcd + âb+ ĉd + 2. In other words, the error here can also
depend on the actual numbers involved in the computation.

7 Experimental Evaluation

Implementation details. We implemented our protocols in
C++, and compiled the code using the open-source Bazel [2]
build tool. We support moduli up to 127-bit for both the fixed-
point ring and the field. For the operations, we use the native
C++ uint64_t type for moduli smaller than 64-bits, and uint128
from Google’s abseil library [3] for larger moduli. We give
users the option to decide the base integer size (64-bit or
128-bit) and provide experimental results for both.
Experimental setup. We ran all of our experiments on two
c2-standard-8 Google cloud instances with 3.1 GHz base fre-
quency and 32 GB RAM. Our code is single-threaded and only
uses a single core. For the LAN setting, both instances were
deployed in the us-central1 region where the mean network
latency was 0.15ms and the bandwidth was about 1.5GB/s.
For the WAN setting, one instance was in us-central1 while
the other was in us-west2; the mean network latency was
49ms and the bandwidth was about 50MB/s.

7.1 Secure Exponentiation Experiments
We benchmark our secure exponentiation protocol separately
and present our results and comparisons here.
Timing experiments. We provide the offline and online
computation times as well as end-to-end benchmarks (both
LAN and WAN) for several (l, l f) parameters and for both

(l f , l) 64-bit BASEINT 128-bit BASEINT

Offline Online
End-to-End

Offline Online
End-to-End

LAN WAN LAN WAN

(5,32) 3.09 0.004 4.21 11.06 7.68 1.01 9.56 16.29
(10,63) 3.22 0.99 5.43 12.07 9.24 14.9 25.02 32.17
(15,63) 3.22 1.01 5.49 12.11 9.24 16.0 26.29 32.95
(20,100) - - - - 11.15 33.2 44.91 52.35
(20,127) - - - - 12.9 54.9 68.63 75.91

Table 1: Timing benchmarks (in µs) for the exponentiation
protocol, for base 64-bit and 128-bit int sizes. Exponents
in the range [−5,5] were randomly sampled and shared in
the fixed-point ring. Offline and online phase computation
times (in µs) are averaged over 1 million runs, and don’t in-
clude communication. End-to-end times per exponentiation
are given in the LAN and WAN settings where 100K expo-
nentiations are batched for communication. End-to-end times
include computation and communication costs for both the
online and offline phases.

l f
Our approach Polynomial Approx. [9]

µ σ µ σ

5 0.0286 0.011 0.0932 0.0202
10 0.0009 0.0003 0.0051 0.0019
20 9.2×10−7 3.5×10−7 6.6×10−6 5×10−6

30 9.1×10−10 3.5×10−10 1.3×10−8 2×10−8

40 8.9×10−13 3.4×10−13 1.8×10−9 7.4×10−9

Table 2: Mean (µ) and standard deviation (σ) of the fractional
exponentiation error as a ratio of the actual result for both our
approach and polynomial approximation (as in [9]). Expo-
nents are sampled and shared randomly. The error is averaged
over 1 million runs.

64-bit and 128-bit base integer sizes. The results are shown in
Table 1. We find that especially when batching the communi-
cation for several exponentiations together, the impact of the
network is quite minimal, primarily due to the small amount
of communication our protocol requires.

Accuracy experiments. As mentioned earlier, our exponen-
tiation has smaller error than standard techniques. Since, the
error comes only from the fractional part, we implement both
our fractional exponentiation as well as a degree-9 polynomial
approximation used in [9] and compare the errors in Table 2.
Our errors are smaller by 1 to 2 orders of magnitude and the
difference gets wider with more fractional bits.

Apart from the smaller errors, we also note that our tech-
nique only requires a single round of communication while a
degree-d polynomial approximation usually takes d rounds
when implemented using Horner’s method (as in done in [9]
to reduce total communication). One shortcoming however,
is that while it is straightforward to extend polynomial ap-
proximation to the malicious setting, it is not obvious how to
efficiently do the same for our technique.

Comparison to related work. We did not find any prior
work on fixed-point exponentiation that targets the same

Dataset n m
Paillier [19] Correlated Triples (Approach I) Correlated Triples (Approach II)

LAN (s) WAN (s) Comm. LAN (s) WAN (s) Comm. LAN (s) WAN (s) Comm.

Replicated

1 1 0.06563 0.0752 3 KB 0.0048 0.0051 0.89 KB 0.00007 0.00024 0.89 KB

100
10 5.0371 5.3857 0.17 MB 0.0180 0.0192 17.8 KB 0.0024 0.0037 17.8 KB

100 20.088 20.676 0.30 MB 0.1488 0.1495 44.4 KB 0.0179 0.0195 44.4 KB
1000 171.18 171.85 1.65 MB 1.4597 1.4620 311 KB 0.1759 0.1814 311 KB

1000
10 47.739 48.342 1.52 MB 0.0229 0.0263 151 KB 0.0227 0.0265 151 KB

100 173.58 174.84 1.65 MB 0.1602 0.1642 178 KB 0.1601 0.1640 178 KB
1000 1433.1 1434.4 3.00 MB 1.5889 1.6150 444 KB 1.6003 1.6006 444 KB

10000
10 474.36 476.59 15.0 MB 0.1077 0.1331 1.49 MB 0.2234 0.2506 1.49 MB

100 1709.5 1710.3 15.2 MB 0.5737 0.6008 1.57 MB 1.5840 1.6158 1.57 MB
1000 14053 14056 16.5 MB 5.9126 6.0368 2.36 MB 15.920 15.956 2.36 MB

Somoza 21 11 1.3610 1.4202 48 KB 0.0192 0.0200 6.81 KB 0.0007 0.0012 6.81 KB
PhD 73 17 4.6749 4.7559 135 KB 0.0282 0.0296 15.7 KB 0.0028 0.0042 16.3 KB

Cancer 36 14 2.3283 2.4085 75 KB 0.0233 0.0245 9.47 KB 0.0013 0.0021 9.47 KB

Table 3: Micro benchmarks for generation of correlated Beaver triples ([A], [Bi], [Ci] = [ABi]) in the offline phase for l = 127 bits.
A has dimension n×m; the Bi have dimension m×1. The plaintext modulus used is 2l . Times (in seconds) and communication
cost for correlated triples are amortized for one triple over 1000 iterations. The baseline cost for triple generation via Paillier
encryption (with a 3072-bit keysize) is averaged over 5 iterations. All of our code is single threaded and is run in the LAN setting.

setting we do. The most relevant protocols are the ones in
SCALE-MAMBA [9] (benchmarked in [10]) and Aliasgari
et al. [7]. The protocol from [9] uses fixed-points but fo-
cuses primarily on active security; the one from [7] is in the
semi-honest setting but uses floating-points, is described only
for n≥ 3 parties and only for Shamir shares. Consequently,
while we provide some comparison points, our comparison
is not direct and comes with significant caveats. We intend
the comparison to be primarily directional, and to highlight
the difference in broader protocol approaches. Specifically,
we believe the comparison shows the simplicity of our de-
sign in the 2-party semi-honest setting, and the corresponding
performance gains (often µs vs ms or s).

First, we compare to the 2-party protocol from [9, 10]. As
noted earlier, this protocol targets the active-security setting,
while we target the semi-honest setting, so the comparison
is not direct. [9] requires a full bit decomposition and uses
a polynomial approximation for the fractional part, which
incurs a larger error than our approach. For fixed-point ex-
ponentiation with l = 245 and l f = 40, [10] shows an online
runtime of 15 ms, an offline runtime of 18000 ms, and an
offline cost of 1337 Beaver triples, 1 square tuple, and 7688
shared bits, which comes out to ∼2MB per exponentiation.
In contrast, for those parameters, our total offline cost is 980
bits, i.e., a 2000x improvement. Our implementation only sup-
ports a maximum of l = 127, and therefore our comparison is
not direct, but for (l f , l) = (20,127), our online runtime was
0.055 ms, and our offline time was 0.013 ms. [10] notes that
large parameters were chosen specifically for exponentiation
(as opposed to (20,128) for other functions like square-root,
sine, cosine etc.), due to high numerical instability. This is not
observed in our protocol for the parameters (20,127), largely
due to exponentiating the fractional component in R rather

than using polynomial approximation.
Our protocol also has a large throughput advantage.

While [10] reports 76 ops/s when 50 invocations are run
in parallel, we achieve ∼15,000 ops/s run sequentially for
our 127-bit modulus. We also note that the implementation
from [10] leverages multiple threads while all our code is
single threaded and could potentially be optimized further.

Aliasgari et al [7] provide a secure exponentiation protocol
in the semi honest setting. They consider floating-point expo-
nentiation in the 3-party setting with Shamir shares. This is
significantly different from our setting, since we target fixed-
point exponentiation in the 2-party setting. The comparison
therefore comes with significant caveats, but we provide a
brief analytical comparison here to highlight the differences in
techniques, and therefore efficiency. In particular, the protocol
from [7] requires a full bit decomposition, 4 comparison tests,
and l f floating-point multiplications (where l f is number of
significand bits). For a l f -bit comparable precision (for their
best setting where l f is more than the number of exponent
bits k), it requires at least 16+ 12log l f + log log l f rounds
and O(k)+O(l f log l f) interactive operations (involving ex-
change of a secret share) taking preprocessing and parallel
computation into account. In comparison, our protocol re-
quires a single round and only one interactive operation (i.e.,
only one secret share is exchanged) regardless of l and l f .

7.2 Offline Phase Experiments

We provide micro benchmarks for the offline phase genera-
tion of correlated Beaver triples in both the LAN and WAN
settings in Table 3. As a baseline, we also compare to the
cost when using Paillier encryption. Both our approaches
(see Section 5.1) have 5x-10x less communication cost and

are 520x-4200x faster than Paillier AHE-based approaches.
Experiments in [19] suggest that an OT-based approach is 20x-
30x faster than the Paillier AHE-based one in the LAN setting
which highlights that our protocols would also be faster than
OT-based triple generation.

7.3 Poisson Regression Experiments
We measure the performance of our secure Poisson regression
protocol by comparing it with plaintext Poisson regression,
where the data is provided without encryption. Our secure
regression is implemented with fixed-point numbers, while
the C++ double type is used in the plaintext version.

We use the parameters (l f , l) = (20,127) here but we also
provide results for (l f , l) = (15,63) in the full version [16].

Datasets. We run our regression experiments on three
datasets (detailed next) from the Princeton University course
on Generalized Linear Models [1].

1. Somoza. This dataset contains infant and child survival
rates in Colombia. Survival is modeled as a function of sex,
cohort, and age range. The dataset tracks 2000 infants over
several years, and provides aggregate exposures and counts
over 21 distinct feature combinations.

2. Time to PhD. This dataset predicts PhD graduation as a
function of years in graduate school, university, and residence
status. We encode the explanatory variables into 17 binary
features. Data from 35,000 PhD students is used to calculate
the aggregate exposure period and graduation counts for 73
distinct feature combinations.

3. Smoking and Cancer. This dataset contains information
from a Canadian study of mortality by age and smoking status.
There are 14 different binary features, corresponding to dif-
ferent age buckets and smoking statuses. There are 36 distinct
feature combinations, containing counts and exposure periods
from a total of 92,000 respondents.

Accuracy evaluation. To quantify accuracy, we benchmark
our secure Poisson regression protocol against a plaintext
regression baseline for different learning rates and fixed-point
precision. See Figure 3. We observe that our secure protocol
performs almost exactly as well as the plaintext regression:
the lines plotted for model error versus number of iterations
are nearly coincident.

When we take a closer look at the learned parameter θ, we
find that the actual weights learned by the secure protocol are
also nearly exactly the same as those from plaintext learning.
See Table 4: the root mean square error between the secure
weights and the plaintext weights is very small regardless of
the dataset being tested on.

Performance evaluation. We also benchmark the computa-
tion (offline and online) and online communication efficiency
of our end-to-end protocol in Table 5. In addition to the ear-
lier datasets, we also run our experiments on larger synthetic
datasets. For this, we replicate the Somoza dataset to obtain

Learning rate Iterations
RMSE between plaintext weights and secure weights

Somoza Time to PhD
Smoking and
Lung Cancer

0.0001
100 0.00064 - 0.00016
500 0.00259 - 0.00048

1000 0.00456 - 0.00097

0.00005
100 0.00034 0.00031 0.00021
500 0.00160 0.00123 0.00057

1000 0.00346 0.00200 0.00150

0.00003
100 0.00029 0.00030 0.00023
500 0.00131 0.00126 0.00060

1000 0.00294 0.00228 0.00107

Table 4: RMSE between the weights obtained from secure
regression and those from plaintext regression. This table
shows that the learned weights from secure regression are
nearly the same as those obtained from plaintext regression.

a new dataset of the appropriate size (n×m). We report our
timing results for this under the “Replicated” dataset header.

As there is no previous work done on secure Poisson re-
gression, it is not possible for us to compare efficiency of our
protocol with other work. Instead, we compare our protocol
with a “basic" version that does not use correlated Beaver
triples. We still use our exponentiation protocol. For corre-
lated triples, since the gain is only when multiple gradient
descent iterations are run, for our timing values, we run 1000
iterations, and report the amortized time for 1 iteration.

We find that our protocol performs well, even for larger
datasets. For example, in the LAN setting, for a dataset with
10,000 elements and 100 features, it has an amortized cost of
3.116 seconds of offline time, 5.501 seconds of online time,
and 14.8 MB of communication. Over 100 iterations, the cost
is about 5 minutes of offline time, 9 minutes of online time,
and 1.48 GB of communication.

8 Applications

In this section, we give several concrete applications for se-
cure Poisson regression, and discuss performance of our pro-
tocol in each of these scenarios.

COVID-19 case fatality rate. Recent work [27] performs
an analysis of COVID-19 case fatality using Poisson Regres-
sion. They measure the effect of 9 binary variables on the
counts of COVID-19 fatalities, using 2070 cases as training
examples. Variables include age-range (≥ 60 years), presence
of cardiovascular disease, and presence of neurologic diseases.
The regression model is used to compute the incidence rate ra-
tio (IRR) for each variable, that is, the ratio between predicted
fatalities when that variable is present versus not.

This case provides a good example for health data, where
multiple hospitals may hold slices of the data, and may not
want it to be centralized in the clear. To compute over this data
privately, hospitals could send shares of the data to two servers
who could perform Poisson regression securely, and compute
shares of the model parameters. The model could then be sent

0 200 400 600 800 1000
Iterations

20

40

60

80

100

Ro
ot

 m
ea

n
sq

ua
re

 e
rro

rs

plaintext regression, learning rate = 0.0001
plaintext regression, learning rate = 0.00005
plaintext regression, learning rate = 0.00003
secure regression, learning rate = 0.0001
secure regression, learning rate = 0.00005
secure regression, learning rate = 0.00003

(a) Somoza

0 200 400 600 800 1000
Iterations

20

40

60

80

100

120

140

Ro
ot

 m
ea

n
sq

ua
re

 e
rro

rs

plaintext regression, learning rate = 0.00005
plaintext regression, learning rate = 0.00003
secure regression, learning rate = 0.00005
secure regression, learning rate = 0.00003

(b) Time to PhD

0 200 400 600 800 1000
Iterations

0

50

100

150

200

250

300

350

Ro
ot

 m
ea

n
sq

ua
re

 e
rro

rs

plaintext regression, learning rate = 0.0001
plaintext regression, learning rate = 0.00005
plaintext regression, learning rate = 0.00003
secure regression, learning rate = 0.0001
secure regression, learning rate = 0.00005
secure regression, learning rate = 0.00003

(c) Smoking and Cancer

Figure 3: Convergence of the RMSE for plaintext regression versus Secure Poisson regression with 20-bit fixed-point precision.

Dataset n m

Standard Correlated Triples
Offline Online Offline Online

LAN
(s)

WAN
(s)

Comm.
(MB)

LAN
(s)

WAN
(s)

Comm.
(MB)

LAN
(s)

WAN
(s)

Comm.
(MB)

LAN
(s)

WAN
(s)

Comm.
(MB)

Repl.

100
10 16.700 18.006 0.644 0.008 0.201 0.077 0.028 0.034 0.139 0.006 0.200 0.013
100 46.740 48.877 0.914 0.065 0.271 0.629 0.044 0.065 0.192 0.062 0.254 0.016

1000 351.32 354.22 3.61 0.653 1.172 6.149 0.344 0.371 0.725 0.618 0.963 0.049

1000
10 158.52 168.74 6.17 0.059 0.260 0.763 0.277 0.324 1.33 0.056 0.245 0.123
100 410.40 421.94 6.44 0.593 1.035 6.259 0.414 0.604 1.39 0.558 0.846 0.131

1000 2931.8 2944.1 9.14 5.888 8.474 61.22 3.256 3.460 1.92 5.562 6.045 0.214

10000
10 1582.2 1680.5 61.5 0.584 1.023 7.630 2.650 3.107 13.3 0.549 1.001 1.227
100 4077.7 4181.3 61.7 5.825 8.342 62.56 3.116 4.997 13.5 5.501 5.989 1.285

1000 29040 29154 64.4 59.745 72.234 611.9 65.82 70.61 15.1 55.144 55.862 1.862
Sozoma 21 11 4.067 4.421 0.162 0.002 0.199 0.016 0.003 0.008 0.037 0.002 0.197 0.002

PhD 73 17 13.960 15.005 0.500 0.009 0.202 0.081 0.012 0.028 0.116 0.008 0.201 0.004
Cancer 36 14 6.950 7.526 0.263 0.004 0.199 0.034 0.006 0.014 0.060 0.004 0.199 0.003

Table 5: Benchmarks for secure Poisson regression with the parameters (l f , l) = (20,127) for different datasets. n is the number
of examples and m is the number of features. For larger values of n and m, the Somoza dataset was replicated. Times (in seconds)
are given per iteration of gradient descent over the entire dataset. For the “Standard” column, we use standard Beaver triples
generated via Paillier encryption (e.g., as in [19]) along with our fixed-point exponentiation protocol. For correlated triples, we
use the best performing of our two approaches given the specific (n,m) for offline generation. Both the offline and online phases
are amortized over 1000 iterations. All of our code is single threaded.

to each hospital which would individually compute the IRR
for each variable, and release the aggregate IRRs.

On a synthetic dataset with similar shape, in the LAN set-
ting, our protocol takes 0.268 seconds in the offline phase and

0.103 seconds in the online phase per iteration of gradient de-
scent, with a total communication cost of 3.52 MB. Assuming
100 iterations of gradient descent are needed for convergence,
this results in 26.8 seconds in the offline phase, 10.3 seconds

in the online phase, and a communication of 352 MB.
Predicting credit default rates. [18] use Poisson Regres-
sion to model the rate of default payments by borrowers.
They measure the effect of 6 variables, including income, age,
monthly credit card expenditure, and home-ownership on the
monthly rate of defaulted loan payments using a sample of
1002 individuals. After regression, the authors propose using
the model inference to data of loan applicants to compute
predicted defaults, and thereby characterize risk level.

This case involves training on sensitive financial data,
which may be distributed across several institutions. Securely
computing regression on these values would then consist of
two phases: combining the records from multiple institutions,
followed by performing secure regression on the joint data.
The former task can be handled using techniques like privacy-
preserving record linkage [5]. Our secure protocol is a good
fit for the latter part, as well as the subsequent inference.

On a synthetic dataset with similar shape, in the LAN set-
ting, our protocol incurs 5.8 seconds of offline time and 3.4
seconds of online time to perform 100 iterations of secure
gradient descent, with a total communication cost of 157 MB.
Each iteration would incur 0.058 seconds and 0.034 seconds
of offline and online time, with 1.57 MB of communication.
Modeling Ad campaign conversion rates. Google re-
searchers [26] describe a system for measuring ad campaign
conversion rates using Poisson regression. A “conversion"
corresponds to an individual buying an item after seeing one
or more ads. [26] give several ways to model multiple ad
channels having a combined effect on an individual, with the
ad effects decaying over time. One is to use a “step" decay:
assigning each ad channel 3 binary attributes, corresponding
to whether an individual was exposed to the ad in the short
term (1 day prior), medium term (2-7 days prior) or long term
(7-30 days prior). The conversion rate is then learned via Pois-
son regression using such attributes for some combination
of ad channels. Credit for a conversion is proportionally dis-
tributed to each ad channel according to the relative change
in predicted conversion rate when that ad channel is switched
from exposed to unexposed. The total credit per ad channel
is computed as the sum of its proportional credit across all
conversions in the dataset.

This problem is an excellent case for the use of secure
computation techniques, since it involves sensitive business
and user data that may be held by different ad companies and
transaction data providers. A secure solution would require
privately joining the records, securely performing regression,
and then securely computing the aggregate credit for each ad
channel. The private join could be achieved using privacy-
preserving record linkage techniques [5]. Our work is well-
suited for regression as well as the subsequent inference.

On a synthetic dataset with 5 ad channels and 3 binary
attributes per channel for a total of 15 binary attributes, and
assuming 100,000 training points, our regression takes 6.90
seconds of offline time and 8.197 seconds of online time per

iteration of gradient descent, with 156.7 MB of total commu-
nication. For 100 iterations of gradient descent, we incur 11.5
minutes of offline time and about 14 minutes of online time,
with 15.67 GB of total communication.

9 Conclusion

Poisson regression is a widely used technique for modeling
Poisson processes that occur across the life and social sciences.
In many settings, the inputs for training Poisson models are
sensitive health or financial data held by different parties. The
secure Poisson regression protocol introduced in this paper
enables computation on private data which reveals only the
output Poisson model while protecting the inputs. Our con-
struction achieves this with great efficiency while preserving
accuracy comparable to computation in the clear. For several
real datasets, this means execution in just a few seconds with
a couple MB of communication. At the crux of our protocol is
a new construction for secure fixed-point exponentiation and
a new technique for correlated matrix multiplication, both of
which are of independent interest with applications far beyond
Poisson regression.

Acknowledgments

We thank Tancrède Lepoint for insightful discussions. We
also thank the anonymous reviewers of USENIX Security for
their helpful comments and suggestions.

References

[1] https://data.princeton.edu/wws509/datasets.

[2] https://github.com/bazelbuild/bazel.

[3] https://github.com/abseil/abseil-cpp.

[4] Nitin Agrawal, Ali Shahin Shamsabadi, Matt J. Kusner,
and Adrià Gascón. Quotient: Two-party secure neural
network training and prediction. In CCS, pages 1231–
1247, 2019.

[5] Rakesh Agrawal, Alexandre Evfimievski, and Ramakr-
ishnan Srikant. Information sharing across private
databases. In SIGMOD, pages 86–97, 2003.

[6] Martin R Albrecht, Rachel Player, and Sam Scott. On
the concrete hardness of learning with errors. Journal
of Mathematical Cryptology, 9(3):169–203, 2015.

[7] Mehrdad Aliasgari, Marina Blanton, Yihua Zhang, and
Aaron Steele. Secure computation on floating point
numbers. In NDSS, 2013.

https://data.princeton.edu/wws509/datasets
https://github.com/bazelbuild/bazel
https://github.com/abseil/abseil-cpp

[8] Abdelrahaman Aly, Aysajan Abidin, and Svetla Nikova.
Practically efficient secure distributed exponentiation
without bit-decomposition. In FC, pages 291–309, 2018.

[9] Abdelrahaman Aly, K Cong, D Cozzo, M Keller,
E Orsini, D Rotaru, O Scherer, P Scholl, NP Smart,
T Tanguy, and T Wood. SCALE-MAMBA v1.10: Doc-
umentation, 2020. https://homes.esat.kuleuven.
be/~nsmart/SCALE/Documentation.pdf.

[10] Abdelrahaman Aly and Nigel P. Smart. Benchmarking
privacy preserving scientific operations. In ACNS, pages
509–529, 2019.

[11] Donald Beaver. Efficient multiparty protocols using
circuit randomization. In CRYPTO, pages 420–432,
1992.

[12] Zvika Brakerski, Craig Gentry, and Vinod Vaikun-
tanathan. (Leveled) fully homomorphic encryption with-
out bootstrapping. ACM Trans. Comput. Theory, 6(3),
2014.

[13] E. L. Frome. The analysis of rates using Poisson regres-
sion models. Biometrics, 39(3):665–674, 1983.

[14] Hossein Ghodosi, Josef Pieprzyk, and Ron Steinfeld.
Multi-party computation with conversion of secret shar-
ing. Des. Codes Cryptogr., 62(3):259–272, 2012.

[15] Oded Goldreich. Foundations of Cryptography: Basic
Applications, volume 2. Cambridge University Press,
2004.

[16] Mahimna Kelkar, Phi Hung Le, Mariana Raykova, and
Karn Seth. Secure Poisson regression. Cryptology
ePrint Archive, Report 2021/208, 2021. https://ia.
cr/2021/208.

[17] Vadim Lyubashevsky, Chris Peikert, and Oded Regev.
On ideal lattices and learning with errors over rings. In
EUROCRYPT, pages 1–23, 2010.

[18] Sami Mestiri and Abdeljelil Farhat. Using non-
parametric count model for credit scoring. SSRN Elec-
tronic Journal, 10 2019.

[19] Payman Mohassel and Yupeng Zhang. SecureML: A
system for scalable privacy-preserving machine learning.
In IEEE SP, pages 19–38, 2017.

[20] Jesper Buus Nielsen, Peter Sebastian Nordholt, Clau-
dio Orlandi, and Sai Sheshank Burra. A new approach
to practical active-secure two-party computation. In
CRYPTO, pages 681–700, 2012.

[21] Chao Ning and Qiuliang Xu. Constant-rounds, linear
multi-party computation for exponentiation and modulo
reduction with perfect security. In ASIACRYPT, pages
572–589, 2011.

[22] Emmanuela Orsini, Nigel P. Smart, and Frederik Ver-
cauteren. Overdrive2k: Efficient secure MPC over Z2k

from somewhat homomorphic encryption. In CT-RSA,
pages 254–283, 2020.

[23] Deevashwer Rathee, Thomas Schneider, and K. K.
Shukla. Improved multiplication triple generation over
rings via RLWE-based AHE. In CANS, pages 347–359,
2019.

[24] M. Sadegh Riazi, Mohammad Samragh, Hao Chen,
Kim Laine, Kristin E. Lauter, and Farinaz Koushanfar.
XONN: XNOR-based oblivious deep neural network in-
ference. In USENIX Security, pages 1501–1518, 2019.

[25] Sean Richey. Who votes alone? the impact of voting
by mail on political discussion. Australian Journal of
Political Science, 40(3):435–442, 2005.

[26] Dinah Shender, Ali Nasiri Amini, Xinlong Bao, Mert
Dikmen, Amy Richardson, and Jing Wang. A time
to event framework for multi-touch attribution. arXiv
2009.08432, 2020.

[27] G. J. B. Sousa, T. S. Garces, V. R. F. Cestari, R. S. Florên-
cio, T. M. M. Moreira, and M. L. D. Pereira. Mortality
and survival of COVID-19. Epidemiology and Infection,
148, 2020.

[28] Sameer Wagh, Divya Gupta, and Nishanth Chandran. Se-
curenn: 3-party secure computation for neural network
training. Proc. Priv. Enhancing Technol., 2019(3):26–
49, 2019.

[29] Ching-Hua Yu, Sherman S. M. Chow, Kai-Min Chung,
and Feng-Hao Liu. Efficient secure two-party exponen-
tiation. In CT-RSA, pages 17–32, 2011.

A Detailed secure functionalities

We provide more details on the public fixed-point multiplica-
tion, and division functionalities, as well as the RingChange
operation.

Public fixed-point division. Consider a sharing JxK over
R+
∗ with modulus N, and a public positive divisor c∈Z+. Re-

call that except with probability 2lx/N, the sharing is such that
JxK0+JxK1 = x+N. Now, to compute the fixed-point division

by c, P0 computes JzK0 = N −
⌊

N−JxK0
c

⌋
and P1 computes

JzK1 =
⌊

JxK1
c

⌋
. Notice now that, x

c +N− 1 ≤ JzK0 + JzK1 ≤
x
c +N +1. Therefore, (JzK0 ,JzK1) is a sharing of the represen-
tation of˜x/c inR, with an error at most 2−l f . Note that while
our protocol does not require it, a public negative divisor can
easily be handled by first dividing by the absolute value and
then subtracting the shares from the modulus N.

https://homes.esat.kuleuven.be/~nsmart/SCALE/Documentation.pdf
https://homes.esat.kuleuven.be/~nsmart/SCALE/Documentation.pdf
https://ia.cr/2021/208
https://ia.cr/2021/208

Public fixed-point multiplication. Consider a sharing JxK
overR∗ with modulus N, and a positive public element c ∈
R+
∗ . Let JxK= (r,(x−r) mod N). Let JzK0 =

⌊
cJxK0−cN

2l f

⌋
mod

N and JzK1 =
⌊

cJxK1

2l f

⌋
mod N. Let cJxK0−cN

2l f
= w0− d0, and

cJxK1

2l f
= w1 +d1, where wi are the integer parts and 0≤ di < 1

are the fractional parts. Note the negative sign on d0 since
N > JxK0. We show that (JzK0 ,JzK1) form a sharing of (̂˜c)(˜x).
Recall that this is cx

2l f
when x ∈ R+

∗ and N − c(N−x)

2l f
when

x ∈R−∗ .
Case 1) x ∈ R+

∗ . Then, when r ∈ [2lx ,N), the sharing is
such that JxK0 + JxK1 = x + N. Now, JzK0 + JzK1 mod N ≡
w0 +w1 ≡ (w0−d0 +w1 +d1)+(d0−d1)≡ cx

2l f
+(d0−d1).

Therefore, (cx)/2l f −1≤ JzK0 + JzK1 mod N ≤ (cx)/2l f +1.
Case 2) x ∈R−∗ . Then, when r ∈ [0,N−2lx], the sharing is

such that JxK0 + JxK1 = x (without the modulo). Now, JzK0 +
JzK1 mod N ≡ w0 +w1 ≡ (w0−d0 +w1 +d1)+(d0−d1)≡
−c(N−x)

2l f
+ (d0 − d1). Therefore, (N − c(N−x)

2l f
)− 1 ≤ JzK0 +

JzK1 mod N ≤ (N− c(N−x)

2l f
)+1.

Consequently, when r ∈ [2lx ,N−2lx], i.e., except with prob-
ability less than 2lx+1, this results in a sharing of the repre-
sentation of (˜x)(˜c), with an error of at most 2−l f . Note that a
negative c can also be handled analogously to PubFPDiv.
Ring change. We only require the RingChange operation
to switch rings between ZN and ZN′ where N′ > N, and only
for positive fixed-point numbers. Consider a random sharing
of x ∈ [0,2lx) in ZN and denote the two shares by JxK0 = r
and JxK1 = x− r mod N. Note that when r ∈ [0,2lx), JxK0 +
JxK1 = x (even without a mod N). For any other r, JxK0 +
JxK1 = x +N. This means that for a random sharing of x,
the addition “wraps around” N with probability 1− 2lx

N Now,

if we set JxKZN′
0 = JxKZN

0 +N′−N and JxKZN′
1 = JxKZN

1 , then

(JxKZN′
0 ,JxKZN′

1) forms a sharing of x in ZN′ and wraps around
N′. Consequently, except for a failure probability of at most
2lx/N, the above protocol switches the sharing of x from ZN
to ZN′ with no error.

If necessary, the range for both the shares of both parties
can be expanded to all of ZN′ by using a PRG. Specifically,
both parties can agree on a PRG G the outputs values in ZN′ ,
and a seed g0 = s. For the jth RingChange, they can compute
the next PRG value g j. Then P0 adds g j modulo N′ to its
share, and P1 subtracts g j modulo N′ to its share.

B Background on Ring-LWE

Ring-Learning-With-Errors [17] (RLWE) is a hardness as-
sumption based on which efficient homomorphic encryption
schemes have been constructed. We use the leveled encryption

scheme proposed by Brakersky et al. [12], based on RLWE,
to generate the Beaver triples in our preprocessing phase.
For a positive integer N, the scheme is defined over the ring
R = Z[X]/ΦN(X) where ΦN(X) is an Nth cyclotomic polyno-
mial of degree φ(N) (φ(·) is the Euler’s totient function). We
define the ring Rt = R/tR, and use p,q to denote the plaintext
and ciphertext modulus respectively. Choosing p and q care-
fully allows us to pack φ(N) plaintexts (m1, · · · ,mφ(N)) into
a single ring element m ∈ Rp and enables SIMD operations
(addition, multiplication) over the packed plaintexts.

We now describe the operations for Ring-LWE-based en-
cryption in the two-party setting.

Key Generation. One party samples a key pair (sk, pk) such
that sk = (1,−s), where s ∈ R with coefficients in {−1,0,1}
and s has low Hamming weight (e.g., H(s) = 64) and pk =
(a,b), where a← Rq and b = as+ tε ∈ Rq with ε drawn from
a small noise distribution χ.

Encryption. Given a packed plaintext m ∈ Rp, its fresh
ciphertext can be given by (c0,c1) where c0 = m+bv+ pε0
and c1 = av+ pε1 (where v,ε0,ε1 are drawn from the noise
distribution).

Decryption. The party that holds the secret key can decrypt
the ciphertext to recover the underlying plaintext. Given a
ciphertext c≡ (c0,c1) ∈ R2

q, the plaintext can be computed as
Decsk(c) = c0 + c1s mod p.

Plaintext addition. Given a ciphertext c ≡ (c0,c1) =
Enc(m) ∈ R2

q and a plaintext message m′ ∈ Rp, one can
produce the encryption of (m+m′) as c′ = (c0 +m′,c1) =
Enc(m+m′).

Scaling. Given a ciphertext c ≡ (c0,c1) = Enc(m) ∈ R2
q

and a scalar a ∈ Zp, one can produce the encryption of am =
(am1, · · · ,amN) as c′ = (a · c0,a · c1) = Enc(a ·m).

Shifting. Given a ciphertext c ≡ (c0,c1) = Enc(m) ∈
R2

q where m = (m1, · · · ,mK ,0, · · · ,0), we can produce the
encryption of m′ = (0, · · · ,0,m1, · · · ,mK ,0, · · · ,0) where
m1 is shifted by a distance t and t + K ≤ N. Let v =
(0, · · · ,0,1,0, · · · ,0) where v is zero everywhere except for
the tth position. Then c′ = (v ◦ c0,v ◦ c1) = Enc(m ◦ v) =
Enc(m′) where ◦ denotes polynomial multiplication operation
in Rq = Zq[X]/ΦN(X).

Choosing parameters for Ring-LWE. Following the pa-
rameters suggested by [6], we use a ciphertext prime q = 160
bits for our RLWE scheme when generating Beaver triples
for ring of size p = 63 bits (Z263) and q = 295 bits when gen-
erating triples for ring of size p = 127 bits (Z2127). In the first
case, we use a polynomial modulus of degree 212 = 4096,
while for the later case 214 = 16384. This is sufficient for
security of at least 128 bits. To allow efficient encryption
and decryption via the use of number theoretic transform, we
choose a ciphertext modulus q such that q≡ 1 mod 2N.

	Introduction
	Preliminaries and Background
	Poisson Regression and Gradient Descent
	Secure Computation Functionalities

	Secure Computation over FP Rings
	Secure Poisson Regression Protocol
	Basic Design

	Optimized Batched Multiplication
	Improving The Offline Phase

	Secure Fixed-Point Exponentiation
	Protocol Construction
	Protocol Details
	Other Considerations
	Error Analysis

	Experimental Evaluation
	Secure Exponentiation Experiments
	Offline Phase Experiments
	Poisson Regression Experiments

	Applications
	Conclusion
	Detailed secure functionalities
	Background on Ring-LWE

