Hiding in Plain Sight? On the Efficacy of
Power Side Channel-Based Control Flow Monitoring

Yi Han
Rutgers University

Nils Ole Tippenhauer

CISPA Helmholtz Center for Information Security

Abstract

Physical side-channel monitoring leverages the physical
phenomena produced by a microcontroller (e.g. power con-
sumption or electromagnetic radiation) to monitor program
execution for malicious behavior. As such, it offers a promis-
ing intrusion detection solution for resource-constrained em-
bedded systems, which are incompatible with conventional
security measures. This method is especially relevant in safety
and security-critical embedded systems such as in industrial
control systems. Side-channel monitoring poses unique chal-
lenges for would-be attackers, such as: (1) limiting attack
vectors by being physically isolated from the monitored sys-
tem, (2) monitoring immutable physical side channels with
uninterpretable data-driven models, and (3) being specifically
trained for the architectures and programs on which they are
applied to. As a result, physical side-channel monitors are
conventionally believed to provide a high level of security.

In this paper, we propose a novel attack to illustrate that,
despite the many barriers to attack that side-channel moni-
toring systems create, they are still vulnerable to adversarial
attacks. We present a method for crafting functional malware
such that, when injected into a side-channel-monitored sys-
tem, the detector is not triggered. Our experiments reveal that
this attack is robust across detector models and hardware im-
plementations. We evaluate our attack on the popular ARM
microcontroller platform on several representative programs,
demonstrating the feasibility of such an attack and highlight-
ing the need for further research into side-channel monitors.

1 Introduction

Detection of malicious code execution on a platform is chal-
lenging in general [2], in particular for embedded computer
systems. The embedded setting imposes a host of limitations,
such as constrained computational power and a lack of hard-
ware support for security features [43]. In many cases, em-
bedded systems also have strict real-time operating deadlines;
importantly, this is true of many safety-critical and industrial

Matthew Chan
Rutgers University

Zahra Aref
Rutgers University

Saman Zonouz
Rutgers University

control system (ICS) applications. Previous malicious code
execution attacks on these systems (e.g. Stuxnet [14], Black-
Energy [31], and many others [23]) have been carried out
by nation-state-level adversaries, costing untold amounts in
damage to critical infrastructure and service downtime.

One promising defense for embedded systems against these
attacks is physical side-channel monitoring [3,22,32,39]. It
measures physical phenomena such as transient power con-
sumption or electromagnetic radiation (both a result of circuit
transistor switching) in order to monitor for and accurately
detect malicious behavior.

Physical side-channel monitors pose unique challenges for
would-be adversaries. Unlike traditional monitoring in the
software realm, physical side-channel signals are a conse-
quence of code being executed on a chip. As a result, physical
signals are difficult or impossible to be spoofed or manip-
ulated by an attacker [4]. Side-channel monitors also limit
potential attack vectors by their air-gapped nature, i.e. they
cannot be interacted with except through the microcontroller-
emitted signals that they monitor.

These obstacles are thought to make conventional attacks
ineffective, and promote the idea that physical side-channel
monitors provide a high level of security. Despite those claims,
these systems have not yet been thoroughly evaluated due to
the complexity of doing so. Recent work on evaluating control
flow integrity defenses [29] has shown that the afforded prac-
tical security rarely matches up with the claimed theoretical
security. Likewise, side-channel monitors may be resting on
the assumption that the barriers to attack that they raise are
unlikely to be scaled (i.e., difficulties created by side-channel
monitors, as mentioned above, prevent adversaries from per-
forming attacks on the protected system efficiently or on a
large scale).

In this work, we address the question: “Are physical side-
channel monitors as secure as commonly thought (given that
they can observe all attacker code executed)’—or in other
words: can an attacker hide in plain sight? We present a
novel attack against physical side-channel monitoring systems
which demonstrates that they are vulnerable to an adaptive

adversary who knows that a side-channel monitor is in use.
Our attack uses a carefully-crafted assembly-level malware
injection to produce a side-channel signal that can evade de-
tection by a side-channel monitor. We exploit vulnerabilities
of the data-driven models used in side-channel monitoring,
finding adversarial programs which behave maliciously but
evade detection. To facilitate reproduction of our approach
and results (in contrast to prior work), we have made our code
open source .

We summarize our main contributions as follows:

* We present a novel attack highlighting the design-level
vulnerabilities of physical side-channel monitors to ad-
versarial examples.

* We present a methodology for crafting such adversarial
attacks on side-channel monitors, discussing how we
approach the related challenges to create stealthy and
functional malware.

* We evaluate our attack using the popular ARM Cortex-
M processor on various control programs and control
attacks. We show that our attack approach can find an
evading sample in all cases.

2 Background

Physical Side-Channels. Physical side-channels refer to
physical phenomena produced as a side-effect of system oper-
ations in digital circuits. Specifically, the execution of instruc-
tions as well as data read and write cause CMOS components
in the digital circuits to switch on and off. This creates vary-
ing currents and voltages. Such varying current and voltage
values can be observed by looking at the voltage fluctuations
in the power consumption in the circuits. Such voltage fluc-
tuations, called power side-channel signals, can be captured
by measuring the voltage at the VCC pins of a digital chip
(e.g., a micro-processor). Executing different instructions or
transferring different data values across a data bus create dif-
ferent power side-channel signal patterns. The signal patterns
are also affected by noise in the circuits. Nevertheless, power
signals can be used to infer system execution within a chip.
There are other physical side-channels such as electromag-
netic (EM), acoustic, and thermal side-channels, however in
this paper we focus mainly on power side-channel signals.

Physical Side-Channel Monitors. Physical side-channel
monitors have been employed both in academia [22,32,39]
and industry [3] to monitor the security of a system. The main
advantage of physical side-channel monitors compared to tra-
ditional software-based monitors is that they are air-gapped,
meaning that they are implemented externally to the moni-
tored system. This provides isolation and a separate attack
surface, reducing the number of available attack vectors.

Uhttps://github.com/yihan0512/HidingInPlainSight.git

Side-Channel Monitoring System

—————————————————————————————————

Physical ~|=»| Controller i 1. Data Acquisition
System ==t I
ad
|
! /
t : V
|
Q [—
Capturing Side- I I____________________________________
Channel Signal 1 Monitoring

|

|

|

| 10100111010
1 10101101010
| 00100101000
| 10101011010
| 01001001001
| 01010100101
|

|

|

Figure 1: A side-channel monitor, consisting of (1) data
acquisition, (2) model training, and (3, 4) querying the model
to monitor behavior.

Physical side-channel monitors monitor the execution of
a program though physical side-channel signals. A physical
side-channel monitor consists of two parts, a physical side-
channel collection module and an anomaly detector. The sig-
nal collection module collects physical side-channel signals
during the execution of the program. The anomaly detector
predicts the status of the program (e.g., normal or abnormal,
malicious or benign) based on the collected signals.

The setup of a physical side-channel monitor is illustrated
in Figure 1. They are commonly trained using data-driven
models since current embedded platforms are exceedingly
diverse and complex, discouraging the use of manually de-
signed models. In the signal collection module, physical side-
channel signals are collected during the normal execution of
the program. This allows for initial training in a clean environ-
ment as well as subsequent retraining when necessary over
time. The collected signals represent a wide subset of possible
behaviors and control flows of the program. Once a model
has been trained to sufficiently high accuracy, the monitoring
phase begins. During system operation, the monitor measures
the system, returning a response on whether the system is
executing benign or malicious code.

Formalizing Side-Channel Restrictions. Pierazzi et
al. [44] provide a formalized understanding of the challenges
that a side-channel domain poses to an adversary. They
differentiate between the problem space — the attacker-
modifiable program code — and the feature space, which in
this case is the resulting side-channel signal and input to
the monitor. Without knowing an invertible or differentiable
mapping between the problem and the feature space, standard
gradient-based adversarial attacks [19] are infeasible.
Although the estimation or derivation of such a map-
ping poses an interesting question, we note that discover-
ing such a mapping is outside the scope of this work, as
any such mapping would be to some extent platform spe-
cific and therefore not widely generalizable. Additionally,

Figure 2: Assembly code snippet of the path planning program. Different colors are used to show the mappings between
instructions and corresponding power side-channel signal segments in Figure 3 in a clearer way.

Figure 3: Power side-channel signal collected during the ~ Figure 4: Power side-channel signal after the malicious
execution of the benign program. Colors correspond to the ~Payload is injected at the beginning. The malicious signal
basic blocks of the program in Figure 2. segment is marked in red.

in our testing we found that the resulting physical signal at Signa! collected by the monitor. The signal represents an exe-
each point in time was affected by both the currently exe- cution trace of the path-planning program: which instructions
cuting instruction as well as the series of previously exe- &€ executed, which branches are taken, and which control
cuted instructions, indicating that deriving a mapping would OV is followed. The anomaly detector monitors these power
be non-straightforward. Instead, we utilize a problem-driven Sideé-channel signals and reports any anomalous behavior.

search [11, 45] to learn effective attack strategies. We also More speci cally, the anomaly detector takes the power
focus on several of the major challenge categories identi ed Side-channel of a scan cycle as input and outputs a con dence

by Pierazzi et al. [44], which highlight the domain-speci ¢ score. The' con dence score indicates hoyv likely it is thgt
adversarial barriers which make designing an attack on side{n® input signal corresponds to an execution of the benign
channel monitors dif cult: problem-space transformation lim- Pregram. A threshold is set on the con dence score, with a

itations and semantic preservation. The program code is base©n dence score lower than the threshold indicating an attack
on a set of assembly instructions which have a rigid structure ©" the embedded system. The detector itself uses a data-driven

(feasible control ows), as well as semantic constraints such model trained with power side-channel signals collected over

as temporal and data dependencies. The resulting discrete sét Period of time during normal system operation.
of possible modi cations must be taken into consideration by An adversary wants to perform a data injection attack on

an attacker to preserve program functionality during an attack the robotic arm, e.g., altering the inputs to the path planning
and remain evasive. algorithm. In this way, they can alter the internal state of the

program and hence the output actuation to cause undesired

arm behavior or damage.
3 Problem Formulation The adversary also wants to launch a stealthy attack, i.e.,
the attack should not cause unintentionally observable effects.
For example, replacing the original program with a malware
program entirely might trigger an alarm in the system supervi-
Consider an embedded system executing a path-planning taskor or other automated tools, as a the original data-monitoring
for a robotic arm. This system is protected by a power side-feed is no longer available. Stealthy attacks have a more last-
channel based control ow monitor similar to those presented ing impact on the system compared to attacks which break
in related work and described in the previous section. Fig- down the system quickly, as shown in real world attack exam-
ure 2 and Figure 3 show a highly simpli ed example of a ples, e.g., Stuxnet [24]. To achieve this, the adversary might
typical cyclical control program and corresponding power choose to inject a malicious payload into the benign program.

3.1 Motivating Example

	Introduction
	Background
	Problem Formulation
	Motivating Example
	Research Goals and Challenges
	System Model
	Attacker Model

	Attack Design
	Building a Substitute Setup
	Malicious Payload Injection
	Generation of Evading Samples

	Evaluation
	Experimental Setup
	Evaluation of Attack
	Detailed cross-device attack performance

	Discussion
	Related Work
	Conclusion

