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Abstract

Voice assistants rely on keyword spotting (KWS) to process
vocal commands issued by humans: commands are prepended
with a keyword, such as “Alexa” or “Ok Google,” which must
be spotted to activate the voice assistant. Typically, keyword
spotting is two-fold: an on-device model first identifies the
keyword, then the resulting voice sample triggers a second
on-cloud model which verifies and processes the activation.
In this work, we explore the significant privacy and security
concerns that this raises under two threat models. First, our
experiments demonstrate that accidental activations result in
up to a minute of speech recording being uploaded to the
cloud. Second, we verify that adversaries can systematically
trigger misactivations through adversarial examples, which ex-
poses the integrity and availability of services connected to the
voice assistant. We propose EKOS (Ensemble for KeywOrd
Spotting) which leverages the semantics of the KWS task
to defend against both accidental and adversarial activations.
EKOS incorporates spatial redundancy from the acoustic en-
vironment at training and inference time to minimize distri-
bution drifts responsible for accidental activations. It also
exploits a physical property of speech—its redundancy at dif-
ferent harmonics—to deploy an ensemble of models trained
on different harmonics and provably force the adversary to
modify more of the frequency spectrum to obtain adversarial
examples. Our evaluation shows that EKOS increases the cost
of adversarial activations, while preserving the natural accu-
racy. We validate the performance of EKOS with over-the-air
experiments on commodity devices and commercial voice
assistants; we find that EKOS improves the precision of the
KWS task in non-adversarial settings.

1 Introduction

Voice assistants (VAs) interpret voice commands from their
users to assist in different tasks, access services, and control
smart devices. A typical voice assistant continuously sam-
ples audio through its microphone to detect a user saying a
keyword, such as “Alexa,” “Siri,” or “Google.” This process,
referred to as Keyword Spotting (KWS), serves as the primary
access control to an active voice assistant. Once it detects the
wake keyword, the voice assistant streams the subsequently
recorded audio to be analyzed as a voice command.

Ilia Shumailov
University of Cambridge

Kassem Fawaz
University of Wisconsin-Madison

The Keyword spotting (KWS) task is a two-stage process
spanning the device and cloud: a local on-device model first
detects the keyword and sends a speech segment to the cloud,
which verifies the keyword and processes the accompanying
command [53]. Verification is necessary since on-device mod-
els are typically less accurate; they are optimized to minimize
their compute footprint and latency of predictions [13,44,55],
whereas the cloud model can be a full-fledged natural lan-
guage model with higher precision.

In this paper, we find that unauthorized accidental activa-
tions due to poor precision of the on-device KWS model can
lead to significant privacy violations with up to a minute of
private speech being uploaded to the cloud. In addition, ad-
versaries, who wish to get unauthorized access to the private
VA, may systematically trigger such unauthorized activations
with adversarial examples. This adversarial activation puts the
device integrity and the user’s security at risk, given the nu-
merous appliances and services connected to voice assistants
(e.g., garage door, lights, and credit cards) [15,35,45].

As the entry point for any interaction with the VA, improv-
ing the precision of on-device KWS directly limits the extent
of private conversations leaked to the cloud and reduces the
attack surface available to adversaries. Existing defenses to
these problems rely on generic machine learning approaches,
such as adversarial training [38]. Such approaches typically
harm the natural accuracy—an unacceptable proposition for
VAs—or fail to provably increase the cost of an adversary
launching an over-the-air attack. Other approaches employ
liveness detection mechanisms [3] that potentially introduce
additional privacy problems and do not address the accidental
activations problem. In short, this paper considers the question
of how to improve the robustness of KWS against accidental
and adversarial activations while preserving its precision?

In this paper, we design, implement, and evaluate EKOS
(Ensemble for KeywOrd Spotting) as an affirmative answer
to the above question. EKOS leverages the semantics of the
KWS task to arrive at a more favorable tradeoff between the ro-
bustness and precision of the KWS model. First, EKOS incor-
porates spatial diversity from the acoustic environment at both
training and inference time to minimize distribution drifts
responsible for accidental activations. Second, it exploits a
physical property of speech—its spectrum redundancy—to
deploy an ensemble of models trained on different harmonics.



It provably forces the adversary to modify more of the fre- 4. We generate and releasedataset of the Amazon Echo's
guency spectrum to obtain successful adversarial examples. wake keywordsf Alexg ComputerAmazonE chay. We

Modeling distribution drifts responsible for accidental ac- use this dataset to validaEKOSrobustness on Ama-
tivations is challenging because the physical environment zon's Echo devices. The same methodology can be fol-
evolves constantlyEKOS addresses this issue by exploit- lowed for other commercial devices and keywords.

ing the natural randomness from the physical environment
(such as room impulse responses) and ensembling other voic
aware devices available in the vicinity of the virtual assistant.
In particularEKOS performskws with anensemblef mod-

els, each served by a device with varying internal sensors

h_ardware_, and channel frorr_1 the usEh(OSus_es th_e.dlver.- phone(s) capture the over-the-air audio stream. Then/Ahe
sity ensuing from the ubiquity of smart devices in a given erforms audio pre-processing akeis classi cation.
environment, such as tablets, computers, and smartphoneg,
to improve the precision of thews task by combining the  physical Environment. When an audio signal is transmit-
detection results from these devices. ted over-the-air, the signal re ects off the room walls and the
Improving robustness to adversaries is more challenging opjects in the room. The received signal at a microphone is
because they can still overcome ensembles of models [27, 59]the sum of the line-of-sight and re ected audio copies, known
especially when the feature space@nmon to allnodels.  as reverberations or echo, as shown in Fig. 1. The reverbera-
EKOSaddresses this challenge by utilizing the redundanciestion can be modeled via a room impulse response (R(B)
in speech signals and properties of KWS task. A speech  and the received signal is the convolution of the transmitted
signal carries replicas of the same content (i.e., a word) atgydio and the RIRy(t) = s(t) h(t), whereh(t) depends on
different frequency components: harmonics. It is thus possi-the speaker and microphone locations, the room dimensions,
ble to slice the signal's spectrogram into different slices and gpjects, and the materials absorption factors. Hem(tgjs

assign each slice to a different model without much impact on ynique per every room and speaker-microphone setup.
the natural accuracy. We design these slices and architectures

to exhibit poor transferability. FurthdEKOSrandomizes the  Feature Extraction. The mel-frequency cepstrum coef -
slice-architecture combinations in the ensemble at run-time.cients (MFCC) are the conventional features used for speech
This approach increases the cost of an adversary because thegcognition tasks including ASR amdvs; they reduce the
now have to perturb a majority of the frequency slices before dimensionality of an audio signai(t), to a 2D temporal-
they can control the predictions of the ensemble. spectral map. The MFCCs are computed as follows [40]: (1)
In summary, our contributions are as follows: divide r(t) into short time frames (20—-40ms); (2) compute
the short-time Fourier transform (STFT) of these frames; (3)
‘map the STFT linear frequency scale to the mel-scale using a
tions to the cloud due to accidental activations. Previous Mel-spaced Iterbank. The mel-scale approximates the human
analysis [23] reported misactivations resulting in 10 sec- 2uditory system as it applies more (fewer) Iters in the low
onds of speech being leaked:; our evaluation shows that(Nigh)-frequency range; (4) take the log of the power; and (5)

some misactivations lead to up to a minute of speech apply the discrete cosine transform (DCT). The MFCCs are
leaking to the cloud (Sec. 6.2.3 — Fig. 7). the coef cients of the resultant spectrum at each time frame.

Background on Keyword Spotting

The KWS task is responsible for detecting a set of prede-
'ned keywordsn an audio stream. Typically, théA's micro-

1. We show that privacy leakage is greater than previously
believed when on-device models send private conversa

2. We design an ensemble k¥vS detectors that can run  Classi cation. TheKWwsS task employs a multi-class model
on distributed devices in an environment. This ensemble f( ) to classify an input audio(t) as a label corresponding
leverages the semantics of tke/s task, the properties  to the detected keyword, with theriknowri label for non-
of the audio channel, and the nature of the speech signalkeyword speech. The model consists of three components: (1)
to introduce real diversity to the prediction task (Sec. 5). extracting MFCC features from(t), (2) feeding the MFCCs

3. Our end-to-end evaluation shows that an ensemblet0 a deep neural petyvprk (DNN), 6,md (3) gomputlng an aver-
of three to ve devices, with random slicing and ar- age score of the |nd|V|d_uaI frames' posterior scores to report

’ the keyword score. Earlier researchikdws considered DNN

chitectures, increases the cost of adversarial attacks . .
(Sec. 6.1.3, 6.2.4). At the same tinEKOS preserves architectures which treated MFCCs as 2D features [48, 58].

L . Choi et al. [16] were the rst to treat the MFCCs as a 1D
the natural accuracy, approximating the baseline accu-,. : . .
: . time signal, where the frequency coef cients are the input
racy and has little performance overhead (Fig. 3, 5). We )
. ) : channels. They proposed TC-ResNet, a temporal convolution
validate the performance &KOSwith over-the-air ex- . ; ;
. ; o . residual network architecture. The 1D temporal convolution
periments on commercial devices; we nd tlEE{OSim-

- . . reduces the feature map size and has a large receptive eld
proves the precision of thews task in non-adversarial P 9 P

settings (Sec. 6.1.2, 6.2.3). Lgithub.com/wi-pi/EKOS
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since the lter covers the whole range of frequencies (chan- Given an audio signai(t), and akwsS modelF( ), the
nels). It achieves better performance at a smaller number ofattacker's objective is to nd a small perturbatidnsuch that
parameters and computations, hence, lower latency. We utilizeF (r(t) + d) = y, wherey is the target keyword that triggers

these architectures in the designEKOS theVA. We refer to this attack as audversarialactivation.
] o Adversarial Examples on Audio. Carlini and Wagner [11]
3 Background on KWS Misactivations constructed a targeted white-box attack on the neural ASR
' . . system, Deep Speech. The attacHigital; i.e., it does not
The KWS performance is crucial for theA's user experi-  consider a physical channel and assumes the audio stream is

ence [46]. A near-optimal true-positive rate is essential for directly fed to the model. The attack optimizes this objective:

the device's responsiveness and utility. On the other hand, a o _ N .

KWS misactivationcompromises the user's privacy and the min "(F(s+ d);y) + a kdky st: kdky <€ (1)

VA-TQ‘ integrity. A misactivgtion takes pIaC(_e when thie is “wheresis the input to the neural networ ), d is the per-

activated by an unauthorized command, i.e., a sound that isy,rhation,y is the target label, is the loss functioreis the

not the correct keyword. In this work, we consider two types  attack budget which bounds the maximum added perturba-

of misactivations: accidental and adversarial activations. tion, anda is a hyperparameter; the adversarial example is
s{t) = s(t)+ d. The authors chooseto be the CTC (Con-

3.1 Accidental Activations nectionist temporal classi cation) loss and use the max-norm
(k ky) which has the effect of adding a small perturbation
An accidentalactivation happens when ti&Vvs modelmis- consistently throughout the utterance samples. This attack,

takenlyinterprets a sound that is not the keyword as a positive however, is against ASR, n&tVs; both ASR anckws have
activation, i.e., a false-positive detection. In such a case, thesimilar preprocessing pipelines involving MFCCs, but the
VA inadvertently records the user's private conversations andtask solved by each model is different.
sends them to the cloud for transcription and execution. The adversarial exampk{t) constructed with Eq. 1 is
The privacy threats stemming from havingawayslis- neither completely imperceptible nor effective over-the-air.
tening microphone in private spaces have been extensivelyThe former requires thaf{t) sounds very similar ts(t) to
studied [1,9, 12,24, 37,39, 66]. Recently, two studies [23,53] a human listener. The latter requires th&s{t) h) =y for
performed a comprehensive analysis of the accidental acany h, whereh is the physical environment room impulse
tivation triggers on a variety ofA devices and keywords. response (RIR) (Sec. 2). Following this initial attack, recent
They use TV shows, newscasts, and speech datasets to locatgorks have focused on solving these two challenges.
phrases that accidentally trigger eagh Dubois et al. [23]
observed 0.95 misactivations per hour, where they identi ed Imperceptibility. ~ Schonherr etal. [52] examine a different
some activations lasting for at least 10 seconds. Likewise,bound on the perturbation that better addresses the human
Schénherr et al. [53] located hundreds of accidental activa-2uditory system perception. They propose psychoacoustic
tions in the evaluated media. They observe that the cloud-masking, asin MP3 encoding, to hide the perturbations around
basedkWs veri cation model reduces the number of local the original speech frequency components, where they are
misactivations. Yet, more than half of the evaluated triggers Parely perceptible to humans. However, their attack assumed
still incorrectly activate the cloud's model. Moreover, they @ perfect channel; i.e., itis not robust over-the-air.

created a dataset of more than 1000 English n-gram IOhrase%)ver—the-air Robustness. Adversarial examples are not ro-

that are phonetically similar to the commercial keywords; . . . : : :
these phrases are likely to cause misactivations. Both studlestSF in the phy5|ca_l V\_/orld when the mput signal IS ?queCt o
) o o environmental variations (transformations)—as initially ob-
noted that th&/A's operation is non-deterministic; it is hard S T
. . ) ' served in vision [5]. The adversary can adapt by considering
to predict when a device may be accidentally activated. o . . o
the distribution of possible transformations, and optimizing

the perturbation over the Expectation over Transformation

3.2 Adversarial Activations (EoT) [5], such that the resulting perturbation transfers across
o L these transformatioren averageQin et al. [45] and Schon-
As far as their integrityis concernedkws models are vul- herr et al. [52] apply EoT to the acoustic domain to capture

nerable to inference time adversarial examples [26,57], whereqom reverberation. They convolve the audio signal with RIR:
an adversary construdtmperceptiblecommands hidden in a

non-suspicious audio utterance, such as music or a YouTube
video, to wake up and interact with th@ [15, 45, 52]. min hEH [(F((s+d) h);y)]+ a kdkp st: kdkp < €

— . 2)
2We note that integrity is not the only property adversaries may target. At- . . . . (
tackers also jeopardize the availability of the ML system, as shown in recent whereH is the RIR distribution of the p055|ble room dimen-

work on the presence of adversarial music [35] or Sponge Examples [54].  sions, and speaker and microphone locations.




4 System and Threat Models given the numerous services and appliances connected to the
o , VA (e.g., garage door, bank accounts). We consider a white-
System Model. We assume theA {0 existin an environ- 4y aitacker who has access to #®'S model parameters
ment that contains a set of trusted dewct_es, such as SMartyg \ell asEKOSs setup internals. This adversary can launch
phones, computers, and tablets. Each device has at least Ongdaptive attacks in an attempt to circumvERIOS Note that
microphone, a network interface, and computing capabili- \o aqversary has nhysicalaccess to the; otherwise, the

ties. We believe these assumptions are realistic about the,yersary can interact with the device using their own voice
households or spaces witfva. As in any realistic Setting, ithout the need to launch adversarial perturbations.

these devices are randomly located within the environment, - 1,64t vectors that directly attack the microphone interface,

experiencing random acoustic channels, and have inhereng, -, a5 yitrasound [47,67] and laser attacks [56], are outside
hardware variations, as shown in the setup at Fig. 1 (1eft). The yo soqne of this work as they are not based on false activations
user deploy&£KOSby installing an app on their microphone- ¢ heva Our work is orthogonal and can compose well with

equipped devices. The app runs in the background, reads the,, o ches to defeat these other threats [7, 62]. In Sec. 7, we
microphone, performgwS, and communicates with the. discuss howEKOScan address these threats.

Threat Model. We consider two independent threat vectors

that result from fals&/A activations due to th&ws model's 5 EKOS: Ensemble for KeywOrd Spotting
imperfections. Both vectors are different in the adversary de -

nition, attack implementation, and the subsequent privacy and5,1 High-level Overview

security violations. We do not suggest that the same adversary

can execute both threat vectors: yet, both threats are enablefKOScomprises two components: a machine learning-based
by the same vulnerability: a fals activation. component (ensemble learning) to improve the robustness

The rst threat vector covers @moteandpassiveadver- of theKWS task against accidental activations, and a signal
sary with access to theA's recordings once they are uploaded Processing-based component (feature slicing) to handle ad-

to the cloud. Because of imperfectionska/S models, the ver§arial gxamples againgws. ,
VA can be accidentally triggered, causing it to record conver- F19- 1 illustrates the high-level operation (leff) and the

sations not intended as commands. Although the cloud hag?rocessing pipeline dEKOS (right) at each deviceEKOS

access to the users' legitimate commands, accidental activadePloysdiversekeyword spotting models on a set of com-

tion poses real privacy threat [46, 53]. Under a legitimate acti- Modity devices, such as smartphones, smart TVs, laptops, and
vation, the user is aware that their commands will be recorded €d9€ devices, and combines their decisions to improve the
and uploaded to the cloud. Detecting the legitimate keyword overall classi cation performance, a technique known as en-

forms an implicit consent to be recorded. However, in the case SEMPIe leaming=KOSviews the output of each model as an

of accidental activation, the recorded conversations are pri-ndependent random variable (vote) specifying the identi ed

vate; the users are unaware and did not approve the recordind<€yword from the input audio. All devices run a lightweight
The privacy concerns stem from the content of the private con-ePserver and are connected to the same wireless network.

versation, the context, and the background noise. Under this! "€ €nsemble integration happens as follows: (1) the main
it initiates th&vs vote

setting, the user's privacy can be compromised in different VA (S€rver) listens continuously; it i _
ways: (1) the cloud uses these recordings to train ML mod- collection from the _othe_r devices (clients) upon detectl_ng a
els [43,49], these models can memorize the training data [10];kKeyword; (2) the maivA issues parallel requests to the client
(2) an adversary compromises the cloud servers and |eakgewces. andlwalts for th(_alr response; 3) each_chent device
such conversations [8, 19, 65]; or (3) third-party transcription Puffers its microphone signal and waits for an inference re-
contractors or law enforcement agencies can potentially havedUest; (4) upon receiving one, it runs KsvS model and
access to the private recordings [21, 36, 61]. returns the p_re_dlcted hard Iabel;_ ar_1d (5) the mmrDL_Jtputs

The second threat vector coveremoteandactiveadver-  the nal prediction through a majority vote mechanism.
sary who activates theA with imperceptible perturbations  Accidental Activations. A key point to harvest the gain of
hidden in a non-suspicious audio utterance, e.g., music. Thisensemble learning is to ensure (as much as possible) that the
adversary can remotely trick the user into playing audio from models' errors are uncorrelated [22, 60]; a voting mechanism
a TV, YouTube, or SoundCloud, which embeds the impercep-in such a case would reduce the false positive rate responsible
tible perturbation — scaling the attack to many users. Prior for accidental activation&£KOS satis es this condition by
research has demonstrated the feasibility of generating adintroducing different levels of diversity at the model design
versarial samples in the form of inconspicuous background and the received input signal.
music [15, 35]. Once th®A is activated, the adversary can EKOS processes speech samples using a setkals
push commands to activate malicious skills or interact with models. We introduce diversity into the models decisions
physical devices in the user's environment. Such adversarialby selecting different architectures and hyperparameters for
activation puts the device's integrity and user's security at risk each model (Sec. 5.3KOSallows thiskwSs ensemble to



Figure 1:EKOSOverview. Left: High-level operation. Right: Details of the signal processing pipeline at the device. Step (1) is

the spoken speech signal, step (2) is the received signal after experiencing the acoustic channel, step (3) is applying a random
feature slicing lter, step (4) is passing the Itered signal through a randomly chosen architecture, step (5) refers to sending the
decisions from individual devices to th@, and step (6) is the nal ensemble output of a majority vote.

be either centralized in theA or distributed over a set of  ported by previous results about the transferability of audio
N smart devices existing in the environment. These devicesadversarial examples [2], as well as our results presented later
experience different acoustic propagation channels and haven Sec. 6 and Fig. 10. Thir&sKOSchooses the slices and ar-
inherent hardware diversity. Hence, they capture uncorrelatedchitectures randomly at run-time, which forces the adversary
samples of the audio stream [29]. to cover more slice-architecture combinations to ensure a suf-
ciently large probability of attack success. In the following,
Adversarial Examples. In its second componerEKOS we discus€£KOSs feature slicing and randomized ensemble.
leverages diversity from the feature space and the environ-
ment to increase the cost of generating adversarial example .
againskws. EKOSdecomposes the speech spectrum into a%'2 Feature Slicing
set of possibly overlapping spectrum slices (feature slicing The feature slicing iEKOS applies bandpass lters to the
in Sec. 52) Because of the nature of the speech Signal, th%peech spectrogram to select frequency sSliE&EOS|ever-
spectrum slices contain harmonics that encode replicas ofages a key property of audio signals: they carry replicated
the speech content. These frequency components, howevefaformation across the different frequency bands. This in-
undergo different transformations as they travel across theformation content, however, is not uniform; bands in lower
physical channel. As a result, each spectrum slice is useful infrequencies contain more information than bands in the higher
identifying keywords found in speech but requires the adver-frequency range. This insight forms the basis for the MFCCs,
sary to inject a perturbation speci c to this spectrum slice.  which perform non-linear mel-scaling of bands as inspired
Ensemble devices behave independently at run-time; eachby the human auditory system [40]. EKOS we follow a
device chooses a subset of spectrum slices at random. Thersimilar methodology; we de ne six bandpass lters, three at
it passes the slice into a randomly chosen architecture (ranthe lower end of the spectrum spanning the bands: [#)x[0
domized ensemble in Sec. 5.3). Each model assigns the slice/50HZ], (2)-[700Hz, 170HZ], (3)-[1650Hz, 290HZ], and an-
with a classi ed keyword and relays its label to tia. other three at the higher end of the spectrum: (4)-[2850
The robustness in this approach arises from three insights43507], (5)-[4300Hz, 605MHZ], (6)-[600CHz, 800tHZ]. No-
related to the classi cation of audio signals. First, the channels tice that the bandwidth of the Iters increases linearly from
are spatially independent; the adversary has to account for750Hz to 200(Hz with 250Hz increments. These bandpass
more transformations in generating the adversarial examples lters are the building blocks of the feature slicing Iters.
As speci edin Sec. 3.1, an adversary uses the expectation over The design of these lters involves two tradeoffs between
transformation technique to generate adversarial examplesiatural and adversarial robustness. The rst tradeoff is the
that are adaptive to this defense, where each transformatiorwidth of the Iter. A set of narrow lters force the attacker to
represents a simulated channel. Having a set of simultaneousidd the perturbation in more concentrated frequency regions,
independent channels constrains the attacker's optimizationmaking it harder to hide imperceptible perturbations [45] — at
problem further; the result is a less optimal (larger) perturba-the cost of reduced natural accuracy. The bandwidth has to
tion (Sec. 6.1.3). Second, adversarial examples in the audidbe wide to capture more content of the speech signal.
domain have poor transferability properties; an adversarial The second tradeoff concerns the overlap between the |-
example optimized for a slice-architecture combination does ters. If lters overlap to the extent that they all share a com-
not transfer easily to other combinations. This insight is sup- mon frequency band, the attacker's strategy would be to target



this single shared band, resulting in a single perturbation that An adaptive attack can target the ensemble models simulta-
transfers across all the Iters; the attacker's optimization func- neously [27,59] given a higher perturbation budget. Thus, we
tion resolves to a single objective as in Egn. 3. On the otherintroduce inference time randomizationE&OSs operation:
hand, if the lters have no overlap, the number of possible we randomize the slice-architecture combination. At each
Iters will be limited. Moreover, the attacker can target such T, interval, each devicerandomly selects a frequency Iter
mutually exclusive bands separately, where the nal perturba-subse(G; G and assigns each Iteg;;; 2 G; a random archi-
tion is the sum of the individual perturbations. Hence, it leads tectureR, 2 F, whereT; is independently set by each device.

to less robustness and randomness irBk®Sensemble. Hence, the slice-architecture combinations independently and
As such, we design the set of Iter& such that each  randomly change every.
feature slicing lterg2 G includes two bandpass lters, one Finally, EKOSdesign is exible and can be optimized to-

chosen from the set of lower bands (lters 1, 2, and 3) and wards a customized utility-robustness level. The user has the
the other chosen from the set of higher bands ( Iters 4, 5, and option not to apply the feature slicing prior to the ensemble.
6). This design results i comprising nine combinations  In such a cas&eKOSdoes not apply the randomized feature
f(1;4);(1,5);(1;,6);(2,4);(2;5);(2:6);(3;4);(3;5);(3;6)0. and architecture selection. It just passes the received signal at
Any single band is repeated only three times across theeach device to a mod&] and aggregates the decisions at the
Iters set G. Hence,g = ws;g]+ wW[s; & ], wherew is a VA. This mode improves th€wWsS accuracy against accidental
rectangular window functiorg, g are the low-frequency activations but not against adversarial activations. Moreover,
window start and end frequencies, and sames{pe, for the the user setEKOS hyperparameters, such &5 I, K, and
high-frequency window. This design balances the amountjGij, to optimize the computational overhead (Sec. 7).

of information passed by each slicing Iter and intentionally

adds overlap between the lIters without sharing any single 5§ 4 Robustness Properties

band among all of them. We show later (Sec. 6.1.3) that

the designed lters preserve the model's natural accuracy The robustness &KOSarises from the increase in the at-
and provide feature space diversity such that their ensembletacker's cost. The original attack requires optimizing over a
accuracy approximates the baseline accuracy. single constraint to force a labglsuch that:

minjdjjp; s.t. E [F((s(t)+ d) h(t) gm)]=y. ()
5.3 Runtime Ensemble hH
whereh H is a random variable describing the channel
between the speaker and possible devices.

Introducing the ensemble of slice-architecture combina-
tions, and assuming the attacker knows the chosen slices and
architectures, the attacker's optimization objective comprises

of architectures, wherK is the number of baselingws . : : .
. . . multiple constraints. Without loss of generality, assume that
architectures. We refer 1§k as the architecturg trained . . ;
; each devical; runs a single moddt; for a specic lter g;;j.

after applying Ite;rg,-. Each device can run one or a.subset The attacker's objective can be represented as:
of KWS models simultaneously based on its processing capa-

In an environment witlN devices, the user's speech signal
S(t) travels over a set of channdigt); each devicel; receives
asignalr;(t) = s(t) h;i(t). A deviced; has access to the set of
G ltersasdenedinSec.5.2andaskt=fRj1l k Kg

bilities, the availability of other devices, and the user's pre- minkdkp s.t.

ferred level of privacy and utility (Sec. 7). The device chooses

randomly a subsés; G frequency lters. It applies each E Fix((s(t)y+d) ho(t) goj(t)) =y

0i;j 2 G tor; resulting in a set of signatsj(t) = ri(t) ;j(t). ho H 4)

Then, the device assigns eagh(t) a random architecture

F 2 F; each model output;j = Fj.«(ri;j(t)), wheref;;j in- N o

dicates the output class (keyword). Each dedicgends the h|—2E b ik (s()+d) h=(t) g=j(t) =y :

setf fi;jj1 j j Gijg to theVA for the nal decision. The B

VA receives a set dfdecisions from all the devices, such that Because of majority voting, the attacker has to satisfy a set
= éi'\'jGij. It performs majority voting by choosing the class of I=2+ 1 constraints to control the ensemble output. Intu-

with the highest number of votes. itively, this optimization problem is more constrained and will

We exhaustively searched through the models trained overresult in a larger perturbation compared to the less constrained

slice-architecture combinations to ensure adversarial examproblem of one slice-architecture combination. This property,

ples have low transferability. Fig. 10, in Appendix, shows however, only holds when gradients of the constraints are lin-

that these models exhibit poor transferability. We conjecture early independent. Otherwise, the same perturbation may be

that reducing the overlap between the ItersGrcontributes able to force models trained on two or more spectrum slices

to this observation. This poor transferability is an important to misclassify when these models' gradients are linearly de-

property forEKOSs robustness, as discussed in Sec. 5.4.  pendent. INEKOS we encourage gradients to be linearly



independent with diverse architectures and by designing thedrawn uniformly at random. During audio pre-processing, we
Iters to have little overlap (Sec. 5.3). apply background noise, RIR convolution, and random shift
EKOSrandomizes the slice-architecture selections at run-to the speech samples to approximate real-world scenarios.
time to increase the cost of the attack. Given a sé @os- _ i _
sible channel-slice-architecture combinations, the adversary©Ver-the-air Environment. In the physical setup, we eval-
has to attack th&l combinations simultaneously to overcome UtEEKOSon a set of commodity devices with varying back-
the randomized ensemble and guarantee attack success, prground noise. We depldgKOSon six devices (D1-D6): a
vided that poor transferability properties hold. This introduces MacBook Prg 'aptOP' an iPad tablet, a Dell PC with a high-
a tradeoff between the attack success and the perturbation siz@‘.uallty directional microphone (Blue Snowball Dell lap-

The attack success increases when the attacker covers mor@P: @ G00gle Pixel XL phone, and a Google Pixel 2 XL phone.
channel-slice-architecture combinations at the cost of con-' N€ devices are distributed in a lab space (14.2x7x3.8m). All

straining the optimization problem further. We evaluate the 9€Vices run alightweight webserver and are connected to the

effect of inference time randomness on the attack in Fig. 5. S&me wireless network. The PC is the mam(server): it
requests and aggregates votes from other devices (clients).

. We use two Echo Dot devices as Bluetooth speakers; the
6 Evaluation rst plays the keywords and the second plays background
) ) noise at half the volume. We evaluate four background scenar-
We evaluatéeKOSin two scenarios: through (1) end-to-end  joq: (1) noise naturally found in the lab, including a humming
open-source (white-box) models (Sec. 6.1) in a simulated AC, keyboard typing, and mouse click sounds; (2) popular En-

enyironzm(ta)?t i”g a physical (_)g/dir-tr;e-airGeznvi(/(\)/nn;enft, and glish songs (music & speech); (3) Google Commands dataset
using (2) black-box commerciais (Sec. 6.2). We design  gise |es that include doing the dishes, biking, running water,
the evaluation in each scenario to answer these questions: miaowing, white and pink noise; and (4) classical masic

1. Q1 DoesEKOS reduce the accidental activation in- Attack against a single model. We build on Qin et al.'s im-
stances? — Sec. 6.1.2, 6.2.3. plementatiof [45] for imperceptible and over-the-air robust

2. Q2 DoesEKOSincrease the cost of generatingaap- adversarial examples on ASR (Sec. 3.2). Note that this attack
tive adversarial activation attack? — Sec. 6.1.3, 6.2.4. is robust only orsimulatedenvironments. In contrast with

ASR, which involves sequence-to-sequence modekigs

is a single word classi cation task. Thus, we simply apply the

cross-entropy loss (instead of the CTC loss) with a regularizer

for either robustness or imperceptibility.

3. Q3 Whatis the performance overhead=iOSin terms
of natural accuracy and latency? — Sec. 6.1.3, 6.1.4.

6.1 Open-Source Models _ _ o
Attack against an ensemble. Alongside attacks on indi-

We implemenEKOSon open-source models and datasets.  yidual models, we evaluate an adaptive attacker. We consider
the strongest possible threat model, where an adversary has

6.1.1 Experimental Setup full access to the ensemble details. This adversary targets
EKOSensemble as a whole: it calculates the overall loss by

dataset [63] for traini 4 testinaVs models. The dataset summing the predicted logits (i.e., the scores assigned to each
ataset [63] for training and testikyVs models. The datase class) across the ensemble models on the input to be attacked.

consists of approximately 65,000 one-second long utterancesr, . " the attack | timized directl thi bined |
of 30 short words, from thousands of different speakers. Sim- en, the afiackis optimized directy on this combinec foss.

ilar to prior work, we select 12 labelsyés, no, up, down,
left, right, on, off, stop, go, silence, unkngwh6, 58]. We 6.1.2 Accidental Activation Evaluation
split the data into: 80% training, 10% validation, and 10%
testing (3081 samples). We use Choi et al.'s implementation
of the dense (DS-CNN), 1D temporal ResNet (TC-ResNet),
and 2D ResNet (TC-ResNet2D) models [16], which achieve
the highest accuracy with a reduced inference time.

Simulated Environment. We simulate the over-the-air Simulated Evaluation. We evaluate an ensemblelahod-
channel usingyroomacousticgs1] python package This els, where each model experiences a unique channel (RIR).
package implements the image-source model [4] to calculatewe evaluate two scenarios: (1) the same architecture is de-

the acoustic reverberation and generate the room impulse repjoyed on alll models, and (2) each model independently
sponse (RIR). We generate 1000 unique RIR samples where

the room dimensions, speaker, and microphones locations are “bluemic.com/en-us/products/snowball/
Syoutube.com/watch?v=y1dbbrfekAM

3github.com/LCAV/pyroomacoustics 6github.com/tensor ow/cleverhans/tree/master/examples/adversarial_asr

Keyword Spotting. We use Google's Speech Commands

First, we evaluat&KOSs performance against accidental
activations and compare it to the baseline (sings model)
performance. Therefore, we exclude the feature slicing com-
ponent fromEKOSSs pipeline in this experiment.




Architecture BL =1 1=3 =4 =5

DS-CNN-M 94.61 8253 1.63 8431 1 83.95 0.85 84.12 0.81 Attack D1 D2 D3 Da D5 1-5
TC-ResNetl4  96.43 91.741.9 9371 1.34 9343 1.12 94.13 0.97

TC-ResNet2D8 96.85 84.641.74 86.27 0.54 86.51 0.87 86.97 0.5 PGD 3378 2867 390 3433 3333 46.89
TC-ResNet8 96.50 92.991.19 93.85 0.74 9457 071 9452 0.43 PGD_RIR 37.22 3644 4889 4111 340 5433
Random Arch. - - 95.131 0.81 94.606 0.67 95.141 0.93

Table 2: Over-the-air adversarial accuracy (%) of

Table 1: Accidental activation accuracy (%) (measd) of an ensemble individual device an€&KOSatl = 5 against PGD
(of sizel) in a simulated environment without enabling feature slicing.2nd PGD with RIR attacks, 90 examples each.

Figure 2: Over-the-air accuracy (mean and stdg&OS Figure 3: Natural mean accuracy (%)EKOSwith feature
against accidental activation for different background noises,slicing (solid lines) and Iter cutoff shift (dotted lines) at
ensemble sizd), and architecture selectioBKOS outper- different architectures and ensemble sizes. The feature slices
forms individual devices (D1-D6) under all scenarios. and cutoff shift are randomly selected at run-time.

selects an architecture at random with replacement. We runother devices (D2, D5, D6) for all noise types since they expe-

the evaluation 20 times to account for randomness. rience a higher signal-to-noise ratio (SNR). D3 also performs
Table 1 shows the mean and standard deviation accuracy a¥vell since it utilizes a directional microphone.
| = 1,i.e., asingle device, and at an ensemble oflsiz&; 4; 5, Next, we randomly combine the six devices in an ensem-

versus the unrealistic baseline (BL) accuracy when the audioPle of sizel = 3,5;7. Each model in selects its architecture
is directly fed to the model (digitally rather than physically). independently at random with replacement. We repeat the
An ensemble of size 3 outperforms the single device for all evaluation ten times to account for architecture and device se-
architectures. There are diminishing returns for ensemblesléction randomness. Fig. 2 shows tEaOSoutperforms all
with more than three models. Random architecture selectionthe individual devices under all background scenarios. Hence,
also outperforms individual architectures. We thus con rm the physical evaluation matches the simulated evaluation and
that an ensemble of diverse architectures and audio channel¥@lidatesEKOS robustness against accidental activations.
enhances the natural accuracy of any single model.
Note that Google Commands is a multi-class and balanced6.1.3  Adversarial Activation Evaluation
dataset with 12 classes. Classifying each keyword with high
accuracy means fewer errors, hence, loaaridental(erro-
neous) activations. Thus, the classi cation accuracy on such a
dataset is an indication of robustness to accidental activationsSimulated Evaluation. Before we evaluate the robustness
bene ts of feature slicing, we ensure that our pipeline main-
Over-the-air Evaluation. We play the same 3081 test sam- tains its natural accuracy. Fig. 3 shows the performance of
ples over the air and record the six devices' microphones. We EKOSat different architectures and ensemble size, with two
feed these samples to the faws architectures. Fig. 2 shows levels of inference time randomness; (1) random lters se-
individual devices (D1-D6) mean accuracy and standard dedection from the se6, and (2) random lter cutoffs shift at
viation across architectures and background noise. Devicegun time. We apply random shifts drawn uniformly from the
closer to the speaker (D1, D4) achieve higher accuracy thanrange 200Hzto the 4 cutoff parameters(g;sh; en).

Second, we evaluateKOSs performance against adversarial
activations: we now include the feature slicing component.



First, when applying random feature slicing, an ensemble feature lIters that were used to generate them. However, the
of only | = 5improves the individual models' accuracy by an device-model assignment is done randomly. Thus, we repeat
average of 6%—corresponding to 50% error rate reduction,the evaluation ten times. Table 2 presents the average adversar-
at all architectures. Hence, the 5 ensemble accuracy ap- ial accuracy and con rms th&KOS ensemble outperforms
proximates the models' accuracy in Table 1, where no feature the individual devices against both attacks.

slicing is applied. Second, when the00Hz random cutoff Next, we evaluate the attack against a randomized run of
shift is applied, it deteriorates the models' accuracy. Still, the EKOS i.e. the feature lters an&kws architectures are se-
ensemble accuracy increases with the ensemble size. lected independently at random. The evaluation is repeated

Next, we evaluat&KOS against an adaptive white-box ten times. Fig. 5 shows the accuracy (mean and standard de-
attacker. We compare the performance of Projected Gradientviation) of individual devices and dEKOSs ensemble at
Descent (PGD), PGD with frequency masking, and PGD with sizel = 3;5;7 for the adversarial examples and their benign
20 RIRs attacks. The adaptive attack is performed over ansamples as well. It is clear that all the devices' accuracy is
ensemble of sizes 1, 3, and 5, repeated ve times for eachhigher than their values in Table 2 due to the randomized run.
ensemble size. All attacks use 100 iterations to accurately We observe from Fig. 5 thd&8KOSs ensemble outper-
approximate the shortest distance to the decision boundary. forms individual devices on benign and adversarial samples.

Fig. 4 plots the false activation rate on adversarial exam-Although we perform feature slicing in this experiment, accu-
ples as a function of the attack budget, with standard deviaracy on benign samples matches thaEBOSwithout feature
tion computed over different keywords. The baseline shows slicing (Fig. 2), especially dt> 3. This is consistent with our
TCResNet8 model trained on all the spectrum; we select ndings from the simulated setup (Fig. 3); the ensemble gain
TCResNet8 as it shows the highest robustness among th&ompensates for the accuracy drop due to feature slicing.
baseline architectures. The gures show that as the ensemble Although adversarial examples are successful in the sim-
size increases, the adversary is unable to maintain the samelated setup (the model's accuracy is 0), they do not always
attack performance compared to the baseline; i.e., the adversucceed over the air (accuraeyO in Table 2 and Fig. 5).
sary needs a higher perturbation budget to reach a speci cMoreover, while the PGD with RIR attack takes the acoustic
false activation rate. At higher attack budget, the perturbation channel into consideration, its attack success rate (1-accuracy)
power increases which leads to higher attack perceptibility.is not always higher than the PGD attack (without RIR). We
Therefore EKOSincreases the cost the adversary faces. attribute these observations to multiple factors: (1) the RIR

Most interestingly, we nd thaEKOS makes it hard to  simulation is only an approximation of the physical acous-
launch frequency masking attack ef ciently (Fig. 4b). The tic channel; (2) there are other physical transformations not
mask constraint is no longer satis ed as frequency peaks taken into account, such as the microphone's non-linearity and
are not necessarily used by individual models due to featurenoise; and (3) the expectation over RIR optimization does not
slicing. The PGD with frequency masking attackBKOS guarantee a successful perturbation across all RIR transforms
is effectively relaxed to the less constrained PGD attack in (all devices and environments). These observations match the
Fig. 4a. For PGD with RIR attack, Fig. 4c shows a lower false ndings from Qin et al. [45], where their adversarial examples
activation rate, w.r.t. Fig. 4a and 4b, at the low attack budget were successful only in a simulated environment.
due to RIR randomness. Note that PGD with RIR optimizes
the perturbation over an EoT of the RIR transform (Eqgn. 3);
the perturbation is not guaranteed to succeed at run-time.

Fig. 8, in the Appendix, similarly shows the performance Finally, we assesEKOSs deployment in terms of devices
of the attacks in the presence of a random lter cutoff shift jntegration and end-to-end laten&KOSlatency stems from
of 200Hz. The models exhibit behavior similar to Fig. 4  two sources: (1) model inference and (2) vote communication
and cause an increased CompleXity for the attacker deSplt%nd aggregatiorEKOS is not sensitive to device Synchro_
its relatively lower natural accuracy. Although hard to for- njzation errors since it combines votes, not signals. Since the
mally capture with the adaptive white-box attack evaluation, ensemble models run simultaneously and independently, the
randomized lter cutoff introduces additional uncertainty for (st source is dominated by the slowest device-architecture
the attacker. Finally, we show in Fig. 9 in the Appendix that pair. The latencies dEKOSs architectures are available in
the attack results in an increase in the perturbation powerprior work [16] (Table 1 and 2) and range between 1.1ms and
received by individual models compared to the baseline. 10.1ms’ We measure the end-to-end latefily by running

Over-the-air Evaluation. We generate 90 adversarial ex- an ensemble of size= 10 on our set of devices; some de-
amples from each of the PGD and PGD with RIR adaptive Vices run more than one model simultaneously. The setup is
attacks against an ensemble of dize5. We p|ay the adver- as follows: D1 runs three models, D4 runs two models, D5
sarial examples ovgr the air and capture the r,ecordmgs from "The inference time is measured on a Google Pixel 1 using the TensorFlow
the commodity d_ewcgas. We evaluate adversarial examples ingjte Android benchmark tool. The authors forced the model to be executed
a white-box setting, i.e., against the same exact models anthn a single core in order to emulate the always-on natukens.

6.1.4 System Integration Analysis




(a) PGD (b) PGD with frequency masking (c) PGD with RIR EoT

Figure 4: False activation rate (%) BKOSagainst 5 randomly selected ensembles of dize4; 3; 5 along-with a TCResNet8
baseline model under adversarial examples generated by PGD, PGD with frequency mask, and PGD with RIR attacks.

API access to the locadws engine. Moreover, since the
commercial models are not trained with feature slicing trans-
formation, we cannot evaluate EKOS end-to-end; it is only
feasible to assess the physical environment effect on acciden-
tal and adversarial activations. We do not apply any feature
transformation or pre-processing on the evaluated keywords.

6.2.1 Experimental Setup

Our setup comprises 5 Echo devices: 4 Echo B&tGen),

and one Echo towerlft Gen), distributed in a lab space

(Fig. 6). The Bluetooth speaker is located in the middle of

the room, and the Echo devices are located at 0.7, 3, 3, 2.7,
Figure 5: Over-the-air accuracy (mean and stdg&OS and 2.6m away from the speaker. We choose Amazon's Echo
under PGD and PGD-RIR attacks and their benign samplesdevices because they can be activated by four different key-
with random slicing Iter and architecture selection. words: {Alexa, Echo, Amazon, Compuitegnence, enabling a

comprehensive study. We automate the activation detection

using a digital photosensitive sensor attached to the device's
and D6 run a single TensorFlow-Lite model each, and D3 (the |ight rim. Once a device detects the keyword, its rim light
mainVA server) runs three models and aggregates the votesturns on, and the sensor captures the change in light. The

We performed 100 inference requests, the average latencysetup is controlled by a Raspberry Pi 4 Model B that plays

DT is 0.32s 0.25s; the median, max, min are 0.21s, 1.53s, the audio sample on the Bluetooth speaker and records the
0.20s, respectivefEKOSs latencyDT is consistent with the Echo devices' activations via the sensors' output.
latency window it takes the cloud KWS module to verify the We run the experiment on the local (of ine) and the lo-
local activation and to perform “Echo Spatial Perceptfdo cal+cloud (online)Xws models. Since th&As operation
coordinate multiple Echo devices in the same environment.js non-deterministic [23, 53], we repeat the of ine (online)
Hence EKOSs latency does not degrade the user experience.experiment three (ten) times and report the average values.
Moreover,EKOSlatency does not increase linearly with the
number of devices; it is not accumulative. Thus, introducing g
more devices to EKOS will not necessarily increase its latency
unless the new device forms a critical path. Positive Samples. We generate two sets of positive sam-
ples for each of the four keywords, nam@ysitive-TTS and
. . ) Positive—Speech. In the rst set,Positive-TTS, we use text-
6.2 Commercial Voice Assistants to-speech APIs from Google, Amazon, and IBM to generate

In this section, we extend our evaluation&OSto commer- /7 Samples for each of the four keywords in different voices

cial VAs and their keywords. This evaluation is challenging (while synthetic, the samples sound natural to the ear).

since we do not have access to their dataset, and there is ng Ve €xtract the second sepsitive-Speech, from conven-
tional speech recognition datasets — Librispeech, VCTK, Com-

8developer.amazon.com/blogs/alexa/post/esp mon \oice, TED-LIUM, and M-AILABS. We search the

.2.2 Evaluation Dataset
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