
Towards More Robust Keyword Spotting for Voice Assistants

Shimaa Ahmed
University of Wisconsin-Madison

Ilia Shumailov
University of Cambridge

Nicolas Papernot
University of Toronto and Vector Institute

Kassem Fawaz
University of Wisconsin-Madison

Abstract
Voice assistants rely on keyword spotting (KWS) to process

vocal commands issued by humans: commands are prepended
with a keyword, such as “Alexa” or “Ok Google,” which must
be spotted to activate the voice assistant. Typically, keyword
spotting is two-fold: an on-device model first identifies the
keyword, then the resulting voice sample triggers a second
on-cloud model which verifies and processes the activation.
In this work, we explore the significant privacy and security
concerns that this raises under two threat models. First, our
experiments demonstrate that accidental activations result in
up to a minute of speech recording being uploaded to the
cloud. Second, we verify that adversaries can systematically
trigger misactivations through adversarial examples, which ex-
poses the integrity and availability of services connected to the
voice assistant. We propose EKOS (Ensemble for KeywOrd
Spotting) which leverages the semantics of the KWS task
to defend against both accidental and adversarial activations.
EKOS incorporates spatial redundancy from the acoustic en-
vironment at training and inference time to minimize distri-
bution drifts responsible for accidental activations. It also
exploits a physical property of speech—its redundancy at dif-
ferent harmonics—to deploy an ensemble of models trained
on different harmonics and provably force the adversary to
modify more of the frequency spectrum to obtain adversarial
examples. Our evaluation shows that EKOS increases the cost
of adversarial activations, while preserving the natural accu-
racy. We validate the performance of EKOS with over-the-air
experiments on commodity devices and commercial voice
assistants; we find that EKOS improves the precision of the
KWS task in non-adversarial settings.

1 Introduction

Voice assistants (VAs) interpret voice commands from their
users to assist in different tasks, access services, and control
smart devices. A typical voice assistant continuously sam-
ples audio through its microphone to detect a user saying a
keyword, such as “Alexa,” “Siri,” or “Google.” This process,
referred to as Keyword Spotting (KWS), serves as the primary
access control to an active voice assistant. Once it detects the
wake keyword, the voice assistant streams the subsequently
recorded audio to be analyzed as a voice command.

The Keyword spotting (KWS) task is a two-stage process
spanning the device and cloud: a local on-device model first
detects the keyword and sends a speech segment to the cloud,
which verifies the keyword and processes the accompanying
command [53]. Verification is necessary since on-device mod-
els are typically less accurate; they are optimized to minimize
their compute footprint and latency of predictions [13,44,55],
whereas the cloud model can be a full-fledged natural lan-
guage model with higher precision.

In this paper, we find that unauthorized accidental activa-
tions due to poor precision of the on-device KWS model can
lead to significant privacy violations with up to a minute of
private speech being uploaded to the cloud. In addition, ad-
versaries, who wish to get unauthorized access to the private
VA, may systematically trigger such unauthorized activations
with adversarial examples. This adversarial activation puts the
device integrity and the user’s security at risk, given the nu-
merous appliances and services connected to voice assistants
(e.g., garage door, lights, and credit cards) [15, 35, 45].

As the entry point for any interaction with the VA, improv-
ing the precision of on-device KWS directly limits the extent
of private conversations leaked to the cloud and reduces the
attack surface available to adversaries. Existing defenses to
these problems rely on generic machine learning approaches,
such as adversarial training [38]. Such approaches typically
harm the natural accuracy—an unacceptable proposition for
VAs—or fail to provably increase the cost of an adversary
launching an over-the-air attack. Other approaches employ
liveness detection mechanisms [3] that potentially introduce
additional privacy problems and do not address the accidental
activations problem. In short, this paper considers the question
of how to improve the robustness of KWS against accidental
and adversarial activations while preserving its precision?

In this paper, we design, implement, and evaluate EKOS
(Ensemble for KeywOrd Spotting) as an affirmative answer
to the above question. EKOS leverages the semantics of the
KWS task to arrive at a more favorable tradeoff between the ro-
bustness and precision of the KWS model. First, EKOS incor-
porates spatial diversity from the acoustic environment at both
training and inference time to minimize distribution drifts
responsible for accidental activations. Second, it exploits a
physical property of speech—its spectrum redundancy—to
deploy an ensemble of models trained on different harmonics.



It provably forces the adversary to modify more of the fre-
quency spectrum to obtain successful adversarial examples.

Modeling distribution drifts responsible for accidental ac-
tivations is challenging because the physical environment
evolves constantly.EKOS addresses this issue by exploit-
ing the natural randomness from the physical environment
(such as room impulse responses) and ensembling other voice-
aware devices available in the vicinity of the virtual assistant.
In particular,EKOSperformsKWS with anensembleof mod-
els, each served by a device with varying internal sensors,
hardware, and channel from the user.EKOSuses thediver-
sity ensuing from the ubiquity of smart devices in a given
environment, such as tablets, computers, and smartphones,
to improve the precision of theKWS task by combining the
detection results from these devices.

Improving robustness to adversaries is more challenging
because they can still overcome ensembles of models [27,59],
especially when the feature space iscommon to allmodels.
EKOSaddresses this challenge by utilizing the redundancies
in speech signals and properties of theKWS task. A speech
signal carries replicas of the same content (i.e., a word) at
different frequency components: harmonics. It is thus possi-
ble to slice the signal's spectrogram into different slices and
assign each slice to a different model without much impact on
the natural accuracy. We design these slices and architectures
to exhibit poor transferability. Further,EKOSrandomizes the
slice-architecture combinations in the ensemble at run-time.
This approach increases the cost of an adversary because they
now have to perturb a majority of the frequency slices before
they can control the predictions of the ensemble.

In summary, our contributions are as follows:

1. We show that privacy leakage is greater than previously
believed when on-device models send private conversa-
tions to the cloud due to accidental activations. Previous
analysis [23] reported misactivations resulting in 10 sec-
onds of speech being leaked; our evaluation shows that
some misactivations lead to up to a minute of speech
leaking to the cloud (Sec. 6.2.3 — Fig. 7).

2. We design an ensemble ofKWS detectors that can run
on distributed devices in an environment. This ensemble
leverages the semantics of theKWS task, the properties
of the audio channel, and the nature of the speech signal
to introduce real diversity to the prediction task (Sec. 5).

3. Our end-to-end evaluation shows that an ensemble
of three to �ve devices, with random slicing and ar-
chitectures, increases the cost of adversarial attacks
(Sec. 6.1.3, 6.2.4). At the same time,EKOSpreserves
the natural accuracy, approximating the baseline accu-
racy and has little performance overhead (Fig. 3, 5). We
validate the performance ofEKOSwith over-the-air ex-
periments on commercial devices; we �nd thatEKOSim-
proves the precision of theKWS task in non-adversarial
settings (Sec. 6.1.2, 6.2.3).

4. We generate and release1 a dataset of the Amazon Echo's
wake keywords:f Alexa;Computer;Amazon;Echog. We
use this dataset to validateEKOSrobustness on Ama-
zon's Echo devices. The same methodology can be fol-
lowed for other commercial devices and keywords.

2 Background on Keyword Spotting

The KWS task is responsible for detecting a set of prede-
�ned keywordsin an audio stream. Typically, theVA's micro-
phone(s) capture the over-the-air audio stream. Then, theVA
performs audio pre-processing andKWS classi�cation.

Physical Environment. When an audio signal is transmit-
ted over-the-air, the signal re�ects off the room walls and the
objects in the room. The received signal at a microphone is
the sum of the line-of-sight and re�ected audio copies, known
as reverberations or echo, as shown in Fig. 1. The reverbera-
tion can be modeled via a room impulse response (RIR)h(t),
and the received signal is the convolution of the transmitted
audio and the RIR,r(t) = s(t) � h(t), whereh(t) depends on
the speaker and microphone locations, the room dimensions,
objects, and the materials absorption factors. Hence,h(t) is
unique per every room and speaker-microphone setup.

Feature Extraction. The mel-frequency cepstrum coef�-
cients (MFCC) are the conventional features used for speech
recognition tasks including ASR andKWS; they reduce the
dimensionality of an audio signal,r(t), to a 2D temporal-
spectral map. The MFCCs are computed as follows [40]: (1)
divide r(t) into short time frames (20–40ms); (2) compute
the short-time Fourier transform (STFT) of these frames; (3)
map the STFT linear frequency scale to the mel-scale using a
mel-spaced �lterbank. The mel-scale approximates the human
auditory system as it applies more (fewer) �lters in the low
(high)-frequency range; (4) take the log of the power; and (5)
apply the discrete cosine transform (DCT). The MFCCs are
the coef�cients of the resultant spectrum at each time frame.

Classi�cation. TheKWS task employs a multi-class model
f (�) to classify an input audior(t) as a label corresponding
to the detected keyword, with the “unknown” label for non-
keyword speech. The model consists of three components: (1)
extracting MFCC features fromr(t), (2) feeding the MFCCs
to a deep neural network (DNN), and (3) computing an aver-
age score of the individual frames' posterior scores to report
the keyword score. Earlier research onKWS considered DNN
architectures which treated MFCCs as 2D features [48,58].

Choi et al. [16] were the �rst to treat the MFCCs as a 1D
time signal, where the frequency coef�cients are the input
channels. They proposed TC-ResNet, a temporal convolution
residual network architecture. The 1D temporal convolution
reduces the feature map size and has a large receptive �eld

1github.com/wi-pi/EKOS

https://github.com/wi-pi/EKOS


since the �lter covers the whole range of frequencies (chan-
nels). It achieves better performance at a smaller number of
parameters and computations, hence, lower latency. We utilize
these architectures in the design ofEKOS.

3 Background on KWS Misactivations

The KWS performance is crucial for theVA's user experi-
ence [46]. A near-optimal true-positive rate is essential for
the device's responsiveness and utility. On the other hand, a
KWS misactivationcompromises the user's privacy and the
VA's integrity. A misactivation takes place when theVA is
activated by an unauthorized command, i.e., a sound that is
not the correct keyword. In this work, we consider two types
of misactivations: accidental and adversarial activations.

3.1 Accidental Activations

An accidentalactivation happens when theKWS modelmis-
takenlyinterprets a sound that is not the keyword as a positive
activation, i.e., a false-positive detection. In such a case, the
VA inadvertently records the user's private conversations and
sends them to the cloud for transcription and execution.

The privacy threats stemming from having analwayslis-
tening microphone in private spaces have been extensively
studied [1,9,12,24,37,39,66]. Recently, two studies [23,53]
performed a comprehensive analysis of the accidental ac-
tivation triggers on a variety ofVA devices and keywords.
They use TV shows, newscasts, and speech datasets to locate
phrases that accidentally trigger eachVA. Dubois et al. [23]
observed 0.95 misactivations per hour, where they identi�ed
some activations lasting for at least 10 seconds. Likewise,
Schönherr et al. [53] located hundreds of accidental activa-
tions in the evaluated media. They observe that the cloud-
basedKWS veri�cation model reduces the number of local
misactivations. Yet, more than half of the evaluated triggers
still incorrectly activate the cloud's model. Moreover, they
created a dataset of more than 1000 English n-gram phrases
that are phonetically similar to the commercial keywords;
these phrases are likely to cause misactivations. Both studies
noted that theVA's operation is non-deterministic; it is hard
to predict when a device may be accidentally activated.

3.2 Adversarial Activations

As far as their integrity2 is concerned,KWS models are vul-
nerable to inference time adversarial examples [26,57], where
an adversary constructsimperceptiblecommands hidden in a
non-suspicious audio utterance, such as music or a YouTube
video, to wake up and interact with theVA [15,45,52].

2We note that integrity is not the only property adversaries may target. At-
tackers also jeopardize the availability of the ML system, as shown in recent
work on the presence of adversarial music [35] or Sponge Examples [54].

Given an audio signalr(t), and aKWS modelF(�), the
attacker's objective is to �nd a small perturbationd, such that
F(r(t) + d) = y, wherey is the target keyword that triggers
theVA. We refer to this attack as anadversarialactivation.

Adversarial Examples on Audio. Carlini and Wagner [11]
constructed a targeted white-box attack on the neural ASR
system, Deep Speech. The attack isdigital; i.e., it does not
consider a physical channel and assumes the audio stream is
directly fed to the model. The attack optimizes this objective:

min `(F(s+ d); y) + a � kdk¥ s:t: kdk¥ < e; (1)

wheres is the input to the neural networkf (�), d is the per-
turbation,y is the target label,̀ is the loss function,e is the
attack budget which bounds the maximum added perturba-
tion, anda is a hyperparameter; the adversarial example is
s0(t) = s(t) + d. The authors choosèto be the CTC (Con-
nectionist temporal classi�cation) loss and use the max-norm
(k � k¥ ) which has the effect of adding a small perturbation
consistently throughout the utterance samples. This attack,
however, is against ASR, notKWS; both ASR andKWS have
similar preprocessing pipelines involving MFCCs, but the
task solved by each model is different.

The adversarial examples0(t) constructed with Eq. 1 is
neither completely imperceptible nor effective over-the-air.
The former requires thats0(t) sounds very similar tos(t) to
a human listener. The latter requires thatF(s0(t) � h) = y for
any h, whereh is the physical environment room impulse
response (RIR) (Sec. 2). Following this initial attack, recent
works have focused on solving these two challenges.

Imperceptibility. Schönherr et al. [52] examine a different
bound on the perturbation that better addresses the human
auditory system perception. They propose psychoacoustic
masking, as in MP3 encoding, to hide the perturbations around
the original speech frequency components, where they are
barely perceptible to humans. However, their attack assumed
a perfect channel; i.e., it is not robust over-the-air.

Over-the-air Robustness. Adversarial examples are not ro-
bust in the physical world when the input signal is subject to
environmental variations (transformations)—as initially ob-
served in vision [5]. The adversary can adapt by considering
the distribution of possible transformations, and optimizing
the perturbation over the Expectation over Transformation
(EoT) [5], such that the resulting perturbation transfers across
these transformationson average. Qin et al. [45] and Schön-
herr et al. [52] apply EoT to the acoustic domain to capture
room reverberation. They convolve the audio signal with RIR:

min E
h� H

[`(F((s+ d) � h); y)] + a � kdkp s:t: kdkp < e;

(2)
whereH is the RIR distribution of the possible room dimen-
sions, and speaker and microphone locations.



4 System and Threat Models

System Model. We assume theVA to exist in an environ-
ment that contains a set of trusted devices, such as smart-
phones, computers, and tablets. Each device has at least one
microphone, a network interface, and computing capabili-
ties. We believe these assumptions are realistic about the
households or spaces with aVA. As in any realistic setting,
these devices are randomly located within the environment,
experiencing random acoustic channels, and have inherent
hardware variations, as shown in the setup at Fig. 1 (left). The
user deploysEKOSby installing an app on their microphone-
equipped devices. The app runs in the background, reads the
microphone, performsKWS, and communicates with theVA.

Threat Model. We consider two independent threat vectors
that result from falseVA activations due to theKWS model's
imperfections. Both vectors are different in the adversary de�-
nition, attack implementation, and the subsequent privacy and
security violations. We do not suggest that the same adversary
can execute both threat vectors; yet, both threats are enabled
by the same vulnerability: a falseVA activation.

The �rst threat vector covers aremoteandpassiveadver-
sary with access to theVA's recordings once they are uploaded
to the cloud. Because of imperfections ofKWS models, the
VA can be accidentally triggered, causing it to record conver-
sations not intended as commands. Although the cloud has
access to the users' legitimate commands, accidental activa-
tion poses real privacy threat [46,53]. Under a legitimate acti-
vation, the user is aware that their commands will be recorded
and uploaded to the cloud. Detecting the legitimate keyword
forms an implicit consent to be recorded. However, in the case
of accidental activation, the recorded conversations are pri-
vate; the users are unaware and did not approve the recording.
The privacy concerns stem from the content of the private con-
versation, the context, and the background noise. Under this
setting, the user's privacy can be compromised in different
ways: (1) the cloud uses these recordings to train ML mod-
els [43,49], these models can memorize the training data [10];
(2) an adversary compromises the cloud servers and leaks
such conversations [8,19,65]; or (3) third-party transcription
contractors or law enforcement agencies can potentially have
access to the private recordings [21,36,61].

The second threat vector covers aremoteandactiveadver-
sary who activates theVA with imperceptible perturbations
hidden in a non-suspicious audio utterance, e.g., music. This
adversary can remotely trick the user into playing audio from
a TV, YouTube, or SoundCloud, which embeds the impercep-
tible perturbation – scaling the attack to many users. Prior
research has demonstrated the feasibility of generating ad-
versarial samples in the form of inconspicuous background
music [15, 35]. Once theVA is activated, the adversary can
push commands to activate malicious skills or interact with
physical devices in the user's environment. Such adversarial
activation puts the device's integrity and user's security at risk

given the numerous services and appliances connected to the
VA (e.g., garage door, bank accounts). We consider a white-
box attacker who has access to theKWS model parameters
as well asEKOS's setup internals. This adversary can launch
adaptive attacks in an attempt to circumventEKOS. Note that
the adversary has nophysicalaccess to theVA; otherwise, the
adversary can interact with the device using their own voice
without the need to launch adversarial perturbations.

Threat vectors that directly attack the microphone interface,
such as ultrasound [47,67] and laser attacks [56], are outside
the scope of this work as they are not based on false activations
of theVA. Our work is orthogonal and can compose well with
approaches to defeat these other threats [7,62]. In Sec. 7, we
discuss howEKOScan address these threats.

5 EKOS: Ensemble for KeywOrd Spotting

5.1 High-level Overview

EKOScomprises two components: a machine learning-based
component (ensemble learning) to improve the robustness
of theKWS task against accidental activations, and a signal
processing-based component (feature slicing) to handle ad-
versarial examples againstKWS.

Fig. 1 illustrates the high-level operation (left) and the
processing pipeline ofEKOS(right) at each device.EKOS
deploysdiversekeyword spotting models on a set of com-
modity devices, such as smartphones, smart TVs, laptops, and
edge devices, and combines their decisions to improve the
overall classi�cation performance, a technique known as en-
semble learning.EKOSviews the output of each model as an
independent random variable (vote) specifying the identi�ed
keyword from the input audio. All devices run a lightweight
webserver and are connected to the same wireless network.
The ensemble integration happens as follows: (1) the main
VA (server) listens continuously; it initiates theKWS vote
collection from the other devices (clients) upon detecting a
keyword; (2) the mainVA issues parallel requests to the client
devices and waits for their response; (3) each client device
buffers its microphone signal and waits for an inference re-
quest; (4) upon receiving one, it runs itsKWS model and
returns the predicted hard label; and (5) the mainVA outputs
the �nal prediction through a majority vote mechanism.

Accidental Activations. A key point to harvest the gain of
ensemble learning is to ensure (as much as possible) that the
models' errors are uncorrelated [22,60]; a voting mechanism
in such a case would reduce the false positive rate responsible
for accidental activations.EKOSsatis�es this condition by
introducing different levels of diversity at the model design
and the received input signal.

EKOS processes speech samples using a set ofl KWS
models. We introduce diversity into the models decisions
by selecting different architectures and hyperparameters for
each model (Sec. 5.3).EKOSallows thisKWS ensemble to



Figure 1:EKOSOverview. Left: High-level operation. Right: Details of the signal processing pipeline at the device. Step (1) is
the spoken speech signal, step (2) is the received signal after experiencing the acoustic channel, step (3) is applying a random
feature slicing �lter, step (4) is passing the �ltered signal through a randomly chosen architecture, step (5) refers to sending the
decisions from individual devices to theVA, and step (6) is the �nal ensemble output of a majority vote.

be either centralized in theVA or distributed over a set of
N smart devices existing in the environment. These devices
experience different acoustic propagation channels and have
inherent hardware diversity. Hence, they capture uncorrelated
samples of the audio stream [29].

Adversarial Examples. In its second component,EKOS
leverages diversity from the feature space and the environ-
ment to increase the cost of generating adversarial examples
againstKWS. EKOSdecomposes the speech spectrum into a
set of possibly overlapping spectrum slices (feature slicing
in Sec. 5.2). Because of the nature of the speech signal, the
spectrum slices contain harmonics that encode replicas of
the speech content. These frequency components, however,
undergo different transformations as they travel across the
physical channel. As a result, each spectrum slice is useful in
identifying keywords found in speech but requires the adver-
sary to inject a perturbation speci�c to this spectrum slice.

Ensemble devices behave independently at run-time; each
device chooses a subset of spectrum slices at random. Then,
it passes the slice into a randomly chosen architecture (ran-
domized ensemble in Sec. 5.3). Each model assigns the slice
with a classi�ed keyword and relays its label to theVA.

The robustness in this approach arises from three insights
related to the classi�cation of audio signals. First, the channels
are spatially independent; the adversary has to account for
more transformations in generating the adversarial examples.
As speci�ed in Sec. 3.1, an adversary uses the expectation over
transformation technique to generate adversarial examples
that are adaptive to this defense, where each transformation
represents a simulated channel. Having a set of simultaneous
independent channels constrains the attacker's optimization
problem further; the result is a less optimal (larger) perturba-
tion (Sec. 6.1.3). Second, adversarial examples in the audio
domain have poor transferability properties; an adversarial
example optimized for a slice-architecture combination does
not transfer easily to other combinations. This insight is sup-

ported by previous results about the transferability of audio
adversarial examples [2], as well as our results presented later
in Sec. 6 and Fig. 10. Third,EKOSchooses the slices and ar-
chitectures randomly at run-time, which forces the adversary
to cover more slice-architecture combinations to ensure a suf-
�ciently large probability of attack success. In the following,
we discussEKOS's feature slicing and randomized ensemble.

5.2 Feature Slicing

The feature slicing inEKOSapplies bandpass �lters to the
speech spectrogram to select frequency slices.EKOSlever-
ages a key property of audio signals: they carry replicated
information across the different frequency bands. This in-
formation content, however, is not uniform; bands in lower
frequencies contain more information than bands in the higher
frequency range. This insight forms the basis for the MFCCs,
which perform non-linear mel-scaling of bands as inspired
by the human auditory system [40]. InEKOS, we follow a
similar methodology; we de�ne six bandpass �lters, three at
the lower end of the spectrum spanning the bands: (1)-[0Hz,
750Hz], (2)-[700Hz, 1700Hz], (3)-[1650Hz, 2900Hz], and an-
other three at the higher end of the spectrum: (4)-[2850Hz,
4350Hz], (5)-[4300Hz, 6050Hz], (6)-[6000Hz, 8000Hz]. No-
tice that the bandwidth of the �lters increases linearly from
750Hz to 2000Hz with 250Hz increments. These bandpass
�lters are the building blocks of the feature slicing �lters.

The design of these �lters involves two tradeoffs between
natural and adversarial robustness. The �rst tradeoff is the
width of the �lter. A set of narrow �lters force the attacker to
add the perturbation in more concentrated frequency regions,
making it harder to hide imperceptible perturbations [45] – at
the cost of reduced natural accuracy. The bandwidth has to
be wide to capture more content of the speech signal.

The second tradeoff concerns the overlap between the �l-
ters. If �lters overlap to the extent that they all share a com-
mon frequency band, the attacker's strategy would be to target



this single shared band, resulting in a single perturbation that
transfers across all the �lters; the attacker's optimization func-
tion resolves to a single objective as in Eqn. 3. On the other
hand, if the �lters have no overlap, the number of possible
�lters will be limited. Moreover, the attacker can target such
mutually exclusive bands separately, where the �nal perturba-
tion is the sum of the individual perturbations. Hence, it leads
to less robustness and randomness in theEKOSensemble.

As such, we design the set of �ltersG such that each
feature slicing �lterg 2 G includes two bandpass �lters, one
chosen from the set of lower bands (�lters 1, 2, and 3) and
the other chosen from the set of higher bands (�lters 4, 5, and
6). This design results inG comprising nine combinations
f (1;4); (1;5); (1;6); (2;4); (2;5); (2;6); (3;4); (3;5); (3;6)g.
Any single band is repeated only three times across the
�lters set G. Hence,g = w[sl ;el ] + w[sh;eh], wherew is a
rectangular window function,sl , el are the low-frequency
window start and end frequencies, and same forsh, eh for the
high-frequency window. This design balances the amount
of information passed by each slicing �lter and intentionally
adds overlap between the �lters without sharing any single
band among all of them. We show later (Sec. 6.1.3) that
the designed �lters preserve the model's natural accuracy
and provide feature space diversity such that their ensemble
accuracy approximates the baseline accuracy.

5.3 Runtime Ensemble

In an environment withN devices, the user's speech signal
s(t) travels over a set of channelshi(t); each devicedi receives
a signalr i(t) = s(t) � hi(t). A devicedi has access to the set of
G �lters as de�ned in Sec. 5.2 and a setF = f Fkj 1 � k � Kg
of architectures, whereK is the number of baselineKWS
architectures. We refer toFj ;k as the architectureFk trained
after applying �lterg j . Each device can run one or a subset
of KWS models simultaneously based on its processing capa-
bilities, the availability of other devices, and the user's pre-
ferred level of privacy and utility (Sec. 7). The device chooses
randomly a subsetGi � G frequency �lters. It applies each
gi; j 2 Gi to r i resulting in a set of signalsr i; j (t) = r i(t) � gi; j (t).
Then, the device assigns eachr i; j (t) a random architecture
Fk 2 F ; each model outputsfi; j = Fj ;k(r i; j (t)) , wherefi; j in-
dicates the output class (keyword). Each devicedi sends the
setf fi; j j1 � j � j Gi jg to theVA for the �nal decision. The
VA receives a set ofl decisions from all the devices, such that
l = å N

i jGi j. It performs majority voting by choosing the class
with the highest number of votes.

We exhaustively searched through the models trained over
slice-architecture combinations to ensure adversarial exam-
ples have low transferability. Fig. 10, in Appendix, shows
that these models exhibit poor transferability. We conjecture
that reducing the overlap between the �lters inG contributes
to this observation. This poor transferability is an important
property forEKOS's robustness, as discussed in Sec. 5.4.

An adaptive attack can target the ensemble models simulta-
neously [27,59] given a higher perturbation budget. Thus, we
introduce inference time randomization toEKOS's operation:
we randomize the slice-architecture combination. At each
Ti interval, each devicei randomly selects a frequency �lter
subsetGi � G and assigns each �ltergi; j 2 Gi a random archi-
tectureFk 2 F , whereTi is independently set by each device.
Hence, the slice-architecture combinations independently and
randomly change everyTi .

Finally, EKOSdesign is �exible and can be optimized to-
wards a customized utility-robustness level. The user has the
option not to apply the feature slicing prior to the ensemble.
In such a case,EKOSdoes not apply the randomized feature
and architecture selection. It just passes the received signal at
each device to a modelFi and aggregates the decisions at the
VA. This mode improves theKWS accuracy against accidental
activations but not against adversarial activations. Moreover,
the user setsEKOS' hyperparameters, such asN, l , K, and
jGi j, to optimize the computational overhead (Sec. 7).

5.4 Robustness Properties

The robustness ofEKOSarises from the increase in the at-
tacker's cost. The original attack requires optimizing over a
single constraint to force a labely, such that:

minjjdjj p; s.t. E
h� H

[F ((s(t) + d) � h(t) � g(t))] = y; (3)

whereh � H is a random variable describing the channel
between the speaker and possible devices.

Introducing the ensemble of slice-architecture combina-
tions, and assuming the attacker knows the chosen slices and
architectures, the attacker's optimization objective comprises
multiple constraints. Without loss of generality, assume that
each devicedi runs a single modelFj ;k for a speci�c �lter gi; j .
The attacker's objective can be represented as:

minkdkp s.t.
�

E
h0� H

�
Fj ;k ((s(t) + d) � h0(t) � g0; j (t))

�
= y

: : :

^ E
hl=2� H

�
Fj ;k

�
(s(t) + d) � hl=2(t) � gl=2; j (t)

��
= y

�
:

(4)

Because of majority voting, the attacker has to satisfy a set
of l=2+ 1 constraints to control the ensemble output. Intu-
itively, this optimization problem is more constrained and will
result in a larger perturbation compared to the less constrained
problem of one slice-architecture combination. This property,
however, only holds when gradients of the constraints are lin-
early independent. Otherwise, the same perturbation may be
able to force models trained on two or more spectrum slices
to misclassify when these models' gradients are linearly de-
pendent. InEKOS, we encourage gradients to be linearly



independent with diverse architectures and by designing the
�lters to have little overlap (Sec. 5.3).

EKOSrandomizes the slice-architecture selections at run-
time to increase the cost of the attack. Given a set ofM pos-
sible channel-slice-architecture combinations, the adversary
has to attack theM combinations simultaneously to overcome
the randomized ensemble and guarantee attack success, pro-
vided that poor transferability properties hold. This introduces
a tradeoff between the attack success and the perturbation size.
The attack success increases when the attacker covers more
channel-slice-architecture combinations at the cost of con-
straining the optimization problem further. We evaluate the
effect of inference time randomness on the attack in Fig. 5.

6 Evaluation

We evaluateEKOSin two scenarios: through (1) end-to-end
open-source (white-box) models (Sec. 6.1) in a simulated
environment and a physical over-the-air environment, and
using (2) black-box commercialVAs (Sec. 6.2). We design
the evaluation in each scenario to answer these questions:

1. Q1: DoesEKOS reduce the accidental activation in-
stances? – Sec. 6.1.2, 6.2.3.

2. Q2: DoesEKOSincrease the cost of generating anadap-
tiveadversarial activation attack? – Sec. 6.1.3, 6.2.4.

3. Q3: What is the performance overhead ofEKOSin terms
of natural accuracy and latency? – Sec. 6.1.3, 6.1.4.

6.1 Open-Source Models

We implementEKOSon open-source models and datasets.

6.1.1 Experimental Setup

Keyword Spotting. We use Google's Speech Commands
dataset [63] for training and testingKWS models. The dataset
consists of approximately 65,000 one-second long utterances
of 30 short words, from thousands of different speakers. Sim-
ilar to prior work, we select 12 labels: {yes, no, up, down,
left, right, on, off, stop, go, silence, unknown} [16, 58]. We
split the data into: 80% training, 10% validation, and 10%
testing (3081 samples). We use Choi et al.'s implementation
of the dense (DS-CNN), 1D temporal ResNet (TC-ResNet),
and 2D ResNet (TC-ResNet2D) models [16], which achieve
the highest accuracy with a reduced inference time.

Simulated Environment. We simulate the over-the-air
channel usingPyroomacoustics[51] python package3. This
package implements the image-source model [4] to calculate
the acoustic reverberation and generate the room impulse re-
sponse (RIR). We generate 1000 unique RIR samples where
the room dimensions, speaker, and microphones locations are

3github.com/LCAV/pyroomacoustics

drawn uniformly at random. During audio pre-processing, we
apply background noise, RIR convolution, and random shift
to the speech samples to approximate real-world scenarios.

Over-the-air Environment. In the physical setup, we eval-
uateEKOSon a set of commodity devices with varying back-
ground noise. We deployEKOSon six devices (D1–D6): a
MacBook Pro laptop, an iPad tablet, a Dell PC with a high-
quality directional microphone (Blue Snowball)4, a Dell lap-
top, a Google Pixel XL phone, and a Google Pixel 2 XL phone.
The devices are distributed in a lab space (14.2x7x3.8m). All
devices run a lightweight webserver and are connected to the
same wireless network. The PC is the mainVA (server): it
requests and aggregates votes from other devices (clients).

We use two Echo Dot devices as Bluetooth speakers; the
�rst plays the keywords and the second plays background
noise at half the volume. We evaluate four background scenar-
ios: (1) noise naturally found in the lab, including a humming
AC, keyboard typing, and mouse click sounds; (2) popular En-
glish songs (music & speech); (3) Google Commands dataset
noise �les that include doing the dishes, biking, running water,
miaowing, white and pink noise; and (4) classical music5.

Attack against a single model. We build on Qin et al.'s im-
plementation6 [45] for imperceptible and over-the-air robust
adversarial examples on ASR (Sec. 3.2). Note that this attack
is robust only onsimulatedenvironments. In contrast with
ASR, which involves sequence-to-sequence modeling,KWS
is a single word classi�cation task. Thus, we simply apply the
cross-entropy loss (instead of the CTC loss) with a regularizer
for either robustness or imperceptibility.

Attack against an ensemble. Alongside attacks on indi-
vidual models, we evaluate an adaptive attacker. We consider
the strongest possible threat model, where an adversary has
full access to the ensemble details. This adversary targets
EKOSensemble as a whole: it calculates the overall loss by
summing the predicted logits (i.e., the scores assigned to each
class) across the ensemble models on the input to be attacked.
Then, the attack is optimized directly on this combined loss.

6.1.2 Accidental Activation Evaluation

First, we evaluateEKOS's performance against accidental
activations and compare it to the baseline (singleKWS model)
performance. Therefore, we exclude the feature slicing com-
ponent fromEKOS's pipeline in this experiment.

Simulated Evaluation. We evaluate an ensemble ofl mod-
els, where each model experiences a unique channel (RIR).
We evaluate two scenarios: (1) the same architecture is de-
ployed on alll models, and (2) each model independently

4bluemic.com/en-us/products/snowball/
5youtube.com/watch?v=y1dbbrfekAM
6github.com/tensor�ow/cleverhans/tree/master/examples/adversarial_asr



Architecture BL l = 1 l = 3 l = 4 l = 5

DS-CNN-M 94.61 82.53� 1.63 84.31� 1 83.95� 0.85 84.12� 0.81
TC-ResNet14 96.43 91.74� 1.9 93.71� 1.34 93.43� 1.12 94.13� 0.97
TC-ResNet2D8 96.85 84.64� 1.74 86.27� 0.54 86.51� 0.87 86.97� 0.5
TC-ResNet8 96.50 92.99� 1.19 93.85� 0.74 94.57� 0.71 94.52� 0.43

Random Arch. – – 95.131� 0.81 94.606� 0.67 95.141� 0.93

Table 1: Accidental activation accuracy (%) (mean� std) of an ensemble
(of sizel ) in a simulated environment without enabling feature slicing.

Attack D1 D2 D3 D4 D5 l = 5

PGD 33.78 28.67 39.0 34.33 33.33 46.89
PGD_RIR 37.22 36.44 48.89 41.11 34.0 54.33

Table 2: Over-the-air adversarial accuracy (%) of
individual device andEKOSat l = 5 against PGD
and PGD with RIR attacks, 90 examples each.

Figure 2: Over-the-air accuracy (mean and std) ofEKOS
against accidental activation for different background noises,
ensemble size (l ), and architecture selection.EKOSoutper-
forms individual devices (D1–D6) under all scenarios.

selects an architecture at random with replacement. We run
the evaluation 20 times to account for randomness.

Table 1 shows the mean and standard deviation accuracy at
l = 1, i.e., a single device, and at an ensemble of sizel = 3;4;5,
versus the unrealistic baseline (BL) accuracy when the audio
is directly fed to the model (digitally rather than physically).
An ensemble of size 3 outperforms the single device for all
architectures. There are diminishing returns for ensembles
with more than three models. Random architecture selection
also outperforms individual architectures. We thus con�rm
that an ensemble of diverse architectures and audio channels
enhances the natural accuracy of any single model.

Note that Google Commands is a multi-class and balanced
dataset with 12 classes. Classifying each keyword with high
accuracy means fewer errors, hence, loweraccidental(erro-
neous) activations. Thus, the classi�cation accuracy on such a
dataset is an indication of robustness to accidental activations.

Over-the-air Evaluation. We play the same 3081 test sam-
ples over the air and record the six devices' microphones. We
feed these samples to the fourKWS architectures. Fig. 2 shows
individual devices (D1–D6) mean accuracy and standard de-
viation across architectures and background noise. Devices
closer to the speaker (D1, D4) achieve higher accuracy than

Figure 3: Natural mean accuracy (%) ofEKOSwith feature
slicing (solid lines) and �lter cutoff shift (dotted lines) at
different architectures and ensemble sizes. The feature slices
and cutoff shift are randomly selected at run-time.

other devices (D2, D5, D6) for all noise types since they expe-
rience a higher signal-to-noise ratio (SNR). D3 also performs
well since it utilizes a directional microphone.

Next, we randomly combine the six devices in an ensem-
ble of sizel = 3;5;7. Each model inl selects its architecture
independently at random with replacement. We repeat the
evaluation ten times to account for architecture and device se-
lection randomness. Fig. 2 shows thatEKOSoutperforms all
the individual devices under all background scenarios. Hence,
the physical evaluation matches the simulated evaluation and
validatesEKOS' robustness against accidental activations.

6.1.3 Adversarial Activation Evaluation

Second, we evaluateEKOS's performance against adversarial
activations: we now include the feature slicing component.

Simulated Evaluation. Before we evaluate the robustness
bene�ts of feature slicing, we ensure that our pipeline main-
tains its natural accuracy. Fig. 3 shows the performance of
EKOSat different architectures and ensemble size, with two
levels of inference time randomness; (1) random �lters se-
lection from the setG, and (2) random �lter cutoffs shift at
run time. We apply random shifts drawn uniformly from the
range� 200Hz to the 4 cutoff parameters (sl ;el ;sh;eh).



First, when applying random feature slicing, an ensemble
of only l = 5 improves the individual models' accuracy by an
average of 6%—corresponding to 50% error rate reduction,
at all architectures. Hence, thel = 5 ensemble accuracy ap-
proximates the models' accuracy in Table 1, where no feature
slicing is applied. Second, when the� 200Hz random cutoff
shift is applied, it deteriorates the models' accuracy. Still, the
ensemble accuracy increases with the ensemble size.

Next, we evaluateEKOS against an adaptive white-box
attacker. We compare the performance of Projected Gradient
Descent (PGD), PGD with frequency masking, and PGD with
20 RIRs attacks. The adaptive attack is performed over an
ensemble of sizes 1, 3, and 5, repeated �ve times for each
ensemble size. All attacks use 100 iterations to accurately
approximate the shortest distance to the decision boundary.

Fig. 4 plots the false activation rate on adversarial exam-
ples as a function of the attack budget, with standard devia-
tion computed over different keywords. The baseline shows
TCResNet8 model trained on all the spectrum; we select
TCResNet8 as it shows the highest robustness among the
baseline architectures. The �gures show that as the ensemble
size increases, the adversary is unable to maintain the same
attack performance compared to the baseline; i.e., the adver-
sary needs a higher perturbation budget to reach a speci�c
false activation rate. At higher attack budget, the perturbation
power increases which leads to higher attack perceptibility.
Therefore,EKOSincreases the cost the adversary faces.

Most interestingly, we �nd thatEKOS makes it hard to
launch frequency masking attack ef�ciently (Fig. 4b). The
mask constraint is no longer satis�ed as frequency peaks
are not necessarily used by individual models due to feature
slicing. The PGD with frequency masking attack onEKOS
is effectively relaxed to the less constrained PGD attack in
Fig. 4a. For PGD with RIR attack, Fig. 4c shows a lower false
activation rate, w.r.t. Fig. 4a and 4b, at the low attack budget
due to RIR randomness. Note that PGD with RIR optimizes
the perturbation over an EoT of the RIR transform (Eqn. 3);
the perturbation is not guaranteed to succeed at run-time.

Fig. 8, in the Appendix, similarly shows the performance
of the attacks in the presence of a random �lter cutoff shift
of � 200Hz. The models exhibit behavior similar to Fig. 4
and cause an increased complexity for the attacker despite
its relatively lower natural accuracy. Although hard to for-
mally capture with the adaptive white-box attack evaluation,
randomized �lter cutoff introduces additional uncertainty for
the attacker. Finally, we show in Fig. 9 in the Appendix that
the attack results in an increase in the perturbation power
received by individual models compared to the baseline.

Over-the-air Evaluation. We generate 90 adversarial ex-
amples from each of the PGD and PGD with RIR adaptive
attacks against an ensemble of sizel = 5. We play the adver-
sarial examples over the air and capture the recordings from
the commodity devices. We evaluate adversarial examples in
a white-box setting, i.e., against the same exact models and

feature �lters that were used to generate them. However, the
device-model assignment is done randomly. Thus, we repeat
the evaluation ten times. Table 2 presents the average adversar-
ial accuracy and con�rms thatEKOS' ensemble outperforms
the individual devices against both attacks.

Next, we evaluate the attack against a randomized run of
EKOS; i.e. the feature �lters andKWS architectures are se-
lected independently at random. The evaluation is repeated
ten times. Fig. 5 shows the accuracy (mean and standard de-
viation) of individual devices and ofEKOS's ensemble at
sizel = 3;5;7 for the adversarial examples and their benign
samples as well. It is clear that all the devices' accuracy is
higher than their values in Table 2 due to the randomized run.

We observe from Fig. 5 thatEKOS's ensemble outper-
forms individual devices on benign and adversarial samples.
Although we perform feature slicing in this experiment, accu-
racy on benign samples matches that ofEKOSwithout feature
slicing (Fig. 2), especially atl > 3. This is consistent with our
�ndings from the simulated setup (Fig. 3); the ensemble gain
compensates for the accuracy drop due to feature slicing.

Although adversarial examples are successful in the sim-
ulated setup (the model's accuracy is 0), they do not always
succeed over the air (accuracy> 0 in Table 2 and Fig. 5).
Moreover, while the PGD with RIR attack takes the acoustic
channel into consideration, its attack success rate (1-accuracy)
is not always higher than the PGD attack (without RIR). We
attribute these observations to multiple factors: (1) the RIR
simulation is only an approximation of the physical acous-
tic channel; (2) there are other physical transformations not
taken into account, such as the microphone's non-linearity and
noise; and (3) the expectation over RIR optimization does not
guarantee a successful perturbation across all RIR transforms
(all devices and environments). These observations match the
�ndings from Qin et al. [45], where their adversarial examples
were successful only in a simulated environment.

6.1.4 System Integration Analysis

Finally, we assessEKOS's deployment in terms of devices
integration and end-to-end latency.EKOSlatency stems from
two sources: (1) model inference and (2) vote communication
and aggregation.EKOS is not sensitive to device synchro-
nization errors since it combines votes, not signals. Since the
ensemble models run simultaneously and independently, the
�rst source is dominated by the slowest device-architecture
pair. The latencies ofEKOS's architectures are available in
prior work [16] (Table 1 and 2) and range between 1.1ms and
10.1ms.7 We measure the end-to-end latencyDT by running
an ensemble of sizel = 10 on our set of devices; some de-
vices run more than one model simultaneously. The setup is
as follows: D1 runs three models, D4 runs two models, D5

7The inference time is measured on a Google Pixel 1 using the TensorFlow
Lite Android benchmark tool. The authors forced the model to be executed
on a single core in order to emulate the always-on nature ofKWS.



(a) PGD (b) PGD with frequency masking (c) PGD with RIR EoT

Figure 4: False activation rate (%) ofEKOSagainst 5 randomly selected ensembles of sizesl = 1;3;5 along-with a TCResNet8
baseline model under adversarial examples generated by PGD, PGD with frequency mask, and PGD with RIR attacks.

Figure 5: Over-the-air accuracy (mean and std) ofEKOS
under PGD and PGD-RIR attacks and their benign samples
with random slicing �lter and architecture selection.

and D6 run a single TensorFlow-Lite model each, and D3 (the
mainVA server) runs three models and aggregates the votes.

We performed 100 inference requests, the average latency
DT is 0.32s� 0.25s; the median, max, min are 0.21s, 1.53s,
0.20s, respectively.EKOS's latencyDT is consistent with the
latency window it takes the cloud KWS module to verify the
local activation and to perform “Echo Spatial Perception8” to
coordinate multiple Echo devices in the same environment.
Hence,EKOS's latency does not degrade the user experience.
Moreover,EKOSlatency does not increase linearly with the
number of devices; it is not accumulative. Thus, introducing
more devices to EKOS will not necessarily increase its latency
unless the new device forms a critical path.

6.2 Commercial Voice Assistants

In this section, we extend our evaluations ofEKOSto commer-
cial VAs and their keywords. This evaluation is challenging
since we do not have access to their dataset, and there is no

8developer.amazon.com/blogs/alexa/post/esp

API access to the localKWS engine. Moreover, since the
commercial models are not trained with feature slicing trans-
formation, we cannot evaluate EKOS end-to-end; it is only
feasible to assess the physical environment effect on acciden-
tal and adversarial activations. We do not apply any feature
transformation or pre-processing on the evaluated keywords.

6.2.1 Experimental Setup

Our setup comprises 5 Echo devices: 4 Echo Dot (3rd Gen),
and one Echo tower (1st Gen), distributed in a lab space
(Fig. 6). The Bluetooth speaker is located in the middle of
the room, and the Echo devices are located at 0.7, 3, 3, 2.7,
and 2.6m away from the speaker. We choose Amazon's Echo
devices because they can be activated by four different key-
words: {Alexa, Echo, Amazon, Computer}, hence, enabling a
comprehensive study. We automate the activation detection
using a digital photosensitive sensor attached to the device's
light rim. Once a device detects the keyword, its rim light
turns on, and the sensor captures the change in light. The
setup is controlled by a Raspberry Pi 4 Model B that plays
the audio sample on the Bluetooth speaker and records the
Echo devices' activations via the sensors' output.

We run the experiment on the local (of�ine) and the lo-
cal+cloud (online)KWS models. Since theVAs operation
is non-deterministic [23, 53], we repeat the of�ine (online)
experiment three (ten) times and report the average values.

6.2.2 Evaluation Dataset

Positive Samples. We generate two sets of positive sam-
ples for each of the four keywords, namelyPositive–TTS and
Positive–Speech. In the �rst set,Positive–TTS, we use text-
to-speech APIs from Google, Amazon, and IBM to generate
77 samples for each of the four keywords in different voices
(while synthetic, the samples sound natural to the ear).

We extract the second set,Positive–Speech, from conven-
tional speech recognition datasets – Librispeech, VCTK, Com-
mon Voice, TED-LIUM, and M-AILABS. We search the


	Introduction
	Background on Keyword Spotting
	Background on KWS Misactivations
	Accidental Activations
	Adversarial Activations

	System and Threat Models
	EKOS: Ensemble for KeywOrd Spotting
	High-level Overview
	Feature Slicing
	Runtime Ensemble
	Robustness Properties

	Evaluation
	Open-Source Models
	Experimental Setup
	Accidental Activation Evaluation
	Adversarial Activation Evaluation
	System Integration Analysis

	Commercial Voice Assistants
	Experimental Setup
	Evaluation Dataset
	Accidental Activation Analysis
	Adversarial Examples on Commercial VAs


	Discussion
	Deployment Analysis
	Limitations and Future Research

	Related Work
	Conclusion
	Appendix
	Circular Microphones Spatial diversity
	Perturbation imperceptibility
	Adversarial Examples Transferability between different slice-architecture combinations
	Commercial Voice Assistants


