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Abstract
With the recent report of erroneous content in 3GPP speci-

fications leading to real-world vulnerabilities, attention has
been drawn to not only the specifications but also the way
they are maintained and adopted by manufacturers and car-
riers. In this paper, we report the first study on this 3GPP
ecosystem, for the purpose of understanding its security haz-
ards. Our research leverages 414,488 Change Requests (CRs)
that document the problems discovered from specifications
and proposed changes, which provides valuable information
about the security assurance of the 3GPP ecosystem.

Analyzing these CRs is impeded by the challenge in find-
ing security-relevant CRs (SR-CRs), whose security connec-
tions cannot be easily established by even human experts. To
identify them, we developed a novel NLP/ML pipeline that
utilizes a small set of positively labeled CRs to recover 1,270
high-confidence SR-CRs. Our measurement on them reveals
serious consequences of specification errors and their causes,
including design errors and presentation issues, particularly
the pervasiveness of inconsistent descriptions (misalignment)
in security-relevant content. Also important is the discovery
of a security weakness inherent to the 3GPP ecosystem, which
publishes an SR-CR long before the specification has been
fixed and related systems have been patched. This opens an
“attack window”, which can be as long as 11 years! Interest-
ingly, we found that some recently reported vulnerabilities
are actually related to the CRs published years ago. Further,
we identified a set of vulnerabilities affecting major carriers
and mobile phones that have not been addressed even today.
With the trend of SR-CRs not showing any sign of abating,
we propose measures to improve the security assurance of the
ecosystem, including responsible handling of SR-CRs.

1 Introduction
The rapid advancement of telecommunication technologies
and perspectives of their applications to security-critical do-
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mains like autonomous driving, emergency services, energy
infrastructure, have brought to spotlight their security assur-
ance. At the center is the ecosystem that supports develop-
ment, maintenance and adoption of telecommunication stan-
dards, as organized by the 3rd Generation Partnership Project
(3GPP) [1], a consortium involving all major telecommuni-
cation standards organizations around the world. In the past
two decades, 3GPP has been responsible for standardizing
2G/3G/4G/5G protocols. Recent years, however, have wit-
nessed concerns being raised about the security quality of its
specifications: studies show that security flaws can be found
from the design described in protocol documents [31, 32] or
predicted from their statements [16]. These reported hazards
can well be just a tip of the iceberg, given 3GPP’s compli-
cated, error-prone procedure for specification development
(involving hundreds of parties across 46 countries), and its
indiscreet release of vulnerability information. An in-depth
analysis of the 3GPP ecosystem therefore becomes critical to
understanding the security guarantees of today’s telecommu-
nication technologies, but has never been done before.
Challenges in the ecosystem analysis. In the way of such
a security analysis is the complexity of 3GPP specifications,
which are characterized by convoluted descriptions in thou-
sands of documents, on millions of pages. Understanding the
content of these documents is painstaking, not to mention
analysis of their security quality and measurement of secu-
rity weaknesses they may carry. In our research, however,
we found a unique resource that can be leveraged: a large
number of Change Requests (CRs) that specify the details of
the changes proposed by 3GPP members. Among them, these
Security-Relevant CRs (SR-CRs) report the descriptions that
could lead to security risks, which essentially are samples of
the security weaknesses from specifications. So the nature
of these problems and the ways they are handled can help us
assess the security assurance offered by the 3GPP ecosystem.

However, finding SR-CRs is highly nontrivial. Already
there are over 400K CRs, which continue to accumulate at
a fast pace. Only a very small portion of them are security-
related. These CRs are not explicitly labeled, determining



their security connections requires in-depth domain knowl-
edge. As an example, S3-171355 reports the absence of details
about computation of HASHMME and HASHUE . However,
without knowing the purpose these hash values serve, one
would have no idea about the CR’s relation to the defense
against a bidding down attack.

The challenge in understanding CRs and their large volume
make any manual effort hard to succeed. Even an attempt
to automate the analysis, finding SR-CRs through machine
learning (ML), faces the difficulty in labeling training data, a
painstaking process that can only be handled by 3GPP experts.
As a result, any ML-based solution can only count on a small
set of ground-truth data (301 SR-CRs in our research).

Intelligent CR analysis. To address this challenge, we de-
veloped a new Natural-Language Processing (NLP) and ML
pipeline, called CREEK (CR Seeker), based upon the recent
progress in these areas. Our approach utilizes a small set of
manually identified positive instances (which are easier to
label than negative instances) to train a binary classier for
finding SR-CRs. For this purpose, we leveraged the idea of
transduction to learn a related but easier task: whether a given
paragraph comes from a security specification (e.g., Technical
Specification (TS) 33.4011), which is explicitly labeled by
3GPP. This learning process results in a transformer generat-
ing embeddings for input paragraphs. On the embeddings of
the labeled positive instances and a subset of unlabeled CRs,
we run Positive-Unlabeled (PU) learning to train a classifier.
The classifier is further refined using self-training on the rest
of the unlabeled CRs. Here our transduction learning uses
the information learnt from the related (easier) task to enrich
the knowledge necessary for finding SR-CRs, PU-learning
builds the classifier just on positively labeled instances and
self-training propagates labels to unlabeled data. Not to men-
tion our innovation on the loss function for the adversarial
training framework for PU-learning, which addresses the po-
tential bias. Our study shows that the CREEK pipeline is
effective at capturing SR-CRs: over 400K CRs, it reported
1,270 SR-CRs with a precision of 91.6%.

Measurement and findings. Our NLP/ML pipeline enables
us to focus on SR-CRs to study security hazards in the 3GPP
ecosystem. In our research, we analyzed the 1,270 SR-CRs de-
tected with high confidence, which reveals serious, sometime
surprising risks. More specifically, we found that the security
issues discovered from 3GPP documents have significant and
diverse consequences, including denial of service, informa-
tion leak, overcharging, etc. Over 70% of them are design
errors, often present in security-related operations. Remains
are problematic presentations including “unclear description”
that misses security-relevant details, and inconsistent state-
ments (called misalignment). Of particular interest is the per-
vasiveness of the misalignment that however is claimed by
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3GPP that they struggle to avoid. The inconsistency is in
security-related content across specifications, including those
at different stages, for different releases and about different
telecommunication generations (2G/3G/4G/5G). Even the
attempt to address these inconsistencies can cause new mis-
alignment, due to miscoordination among the 3GPP groups
working on different documents.

Looking into how these SR-CRs are managed by 3GPP and
affect protocol implementation, we observe a large window
between their publications and proposed changes finally made
to specifications. Such a window typically extends around
58 days, that exposes reported security weaknesses to the ad-
versary and leaves a long time for an attack to happen. Even
after the specifications were mended, we witnessed significant
delays, which can be as long as 11 years, in updating imple-
mented systems by device manufacturers and cellular network
carriers. Also interestingly, we found that 14 weaknesses re-
ported by SR-CRs end up being discovered in real systems
many years later, while 6 of them are still out there today:
not only has our experiment demonstrated their presence in
popular mobile phones (Samsung Galaxy S10, Google Pixel 3
and Nexus 6P), but we also got the evidence for the existence
of 1 weakness in real-world carrier networks (Section 4.2).

Also concerning is the trend of 3GPP security assurance.
Over years, we observed the increase of SR-CRs, with the
problems reported for the new telecommunication generation
outnumbering those found in the old one. The presentation is-
sues do not seem to improve over time either. Across releases,
the attack window actually becomes larger, from 43 days for
Release 4 to 71 days for Release 16. To mitigate the risks, we
propose measures to improve the security assurance of the
3GPP ecosystem, including responsible handling of SR-CRs.
Contributions. Our contributions are outlined as follows:
• New technique. We developed a new NLP/ML pipeline
that effectively identified from a large number of CRs those
security-relevant. Our technique overcomes the challenge in
labeling SR-CRs and is capable of capturing complicated
SR-CRs. Not only has it enabled our measurement study, but
it can also help enhance the security assurance of the 3GPP
ecosystem, by flagging the CRs likely security-relevant and
thus requiring special attention.
• New findings. We performed the first security analysis and
measurement study on the 3GPP ecosystem, bringing to light
surprising findings with significant security implications: e.g.,
difficulty in maintaining consistency across security-relevant
content, large attack windows exposing published weaknesses,
etc. We further propose improved procedures to better protect
the ecosystem, which has never been done before.

2 Background

2.1 3GPP Ecosystem
Organization. 3GPP unites 7 telecommunication standard de-
velopment organizations (e.g., ATIS [2], CCSA [3]) with the
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capability and authority to define, publish and set standards
within the 3GPP scope in their nations or regions, 23 market
representatives offering market advice and bringing market
requirements (e.g., GSM [7], CTIA [5]), and 758 individual
members (e.g., Qualcomm [9], Ericsson [6], Huawei [8]) com-
mitted to technical contribution to 3GPP specifications. These
partners and members form Technical Specification Groups
(TSGs) that prepare, approve and maintain 3GPP Technical
Specifications (TS). Now, 3GPP has 3 TSGs responsible for
different functionalities: Radio Access Network (RAN) TSG,
Service & System Aspects (SA) TSG, and Core Network &
Terminals (CT) TSG. Under each TSG are several Working
Groups (WGs), such as RAN WG1 focusing on radio physical
layer protocols, CT WG1 building the user equipment (UE)
for core network protocols, and SA WG3 identifying the re-
quirements and specifying the architectures and protocols for
security and privacy in 3GPP systems.
Development methodology. Using the recommended stage
methodology characterizing telecommunication services [54],
TSGs develop specifications in 4 stages: stage 1 is an over-
all service description from the user’s standpoint; stage 2
provides an overall description for network functions and ca-
pabilities; stage 3 defines network implementation, such as
switching and signaling, which supports services specified in
the previous stages; stage 4 is for testing. For example, SA
WG3 produces TS 33.501 (security architecture and proce-
dures for 5G System) for stage 2, which should be supported
by stage 3 protocols, such as those for the user equipment
to the core network (like TS 24.501 Non-Access-Stratum
protocol for 5G system) developed by CT WG1.

3GPP organizes specifications into different Releases, each
with distinguishable network capabilities and features, e.g.,
Release 8 for LTE and Release 15 for 5G. When all TSGs de-
termine when a Release is ready, that is, all its features being
defined and all its functionalities and required modifications
being incorporated, they will declare that the Release is stable
enough to be “frozen”. Each Release development usually
takes around 3 years. For instance, Release 8 was started in
January 2006 and frozen in March 2009.
Change Request. Before a Release is formally frozen, the
drafts of its specifications are published on the 3GPP file
server. From that point on, all modifications on these speci-
fications (even after the Release is frozen) need to be made
through Change Requests (CRs). A CR documents a proposed
change raised by an individual member (e.g., Qualcomm), and
brought to the attention of the responsible WG, which should
pertain to a single technical topic only and relate to a specific
version of a specification. In response to the WG’s comments,
the CR may undergo one or more rounds of revisions before
approved by the WG and presented to the TSG. It may further
go through additional changes upon request of the TSG, which
makes the final decision on whether to approve the CR en-
tirely without change or to reject or postpone unconditionally.
If a CR is approved, a new version number of the specifica-

CHANGE REQUEST
<Spec#> <CR#> <Rev#> <Current Version#>

 Title:
 Category:  Release:
 Reason for change:
 Summary of change:
 Consequences if not approved:
 Clauses affected:

CHANGE REQUEST
<Spec#> <CR#> <Rev#> <Current Version#>

 Title:
 Category:  Release:
 Reason for change:
 Summary of change:
 Consequences if not approved:
 Clauses affected:
 Other specs affected:

Figure 1: CR front form template.

tion will be allocated and published online. Figure 1 shows
a CR’s standardized front form. Each CR with a unique ID
(e.g., C1-094446) contains relevant management information
and proposed changes, such as the number of the target speci-
fication, its version and affected Release, the reason for the
proposed modifications, the summary of how to change, and
the consequences if the TSG does not accept it. Also, the form
puts the CR into a certain category, including A (the change to
ensure the consistency with another CR in a different category
made to an earlier Release), B (addition or deletion of a fea-
ture), C (functional modification), D (editorial modification),
and F (correction). Specifically, the category F is meant to
correct a problem in the specification that might lead to an
erroneous operation, an ambiguity in the specification that
could cause wrong implementation, and other specification
errors [12]. All the CRs including their revised versions are
public on the 3GPP file server once they have been proposed
to discuss at the (WG and TSG) meetings. The CR database
on 16th, Aug 2021 shows 414,488 CRs, including 248,254
in Category F, which include all specification problems (e.g.,
security weaknesses) reported by 3GPP individual members
in the history and therefore can be a valuable resource for un-
derstanding security hazards in the 3GPP ecosystem. Notably,
these 248,254 CRs discussed only 166,657 different weak-
nesses. Thus, we only focus on the last CR for each weakness,
and ignore their prior revisions talking the same weakness.

2.2 NLP and ML
BERT and domain adaptation. Bidirectional Encoder Rep-
resentations from Transformer (BERT [20]) is developed
as an NLP pre-training technique, which was originally
trained on a combination of BOOKCORPUS [60] and En-
glish WIKIPEDIA, and has later been extensively utilized
in many NLP tasks after fine-tuning. Fine-tuning BERT can
be done through either domain-adaptive or task-adaptive pre-
training [24]. Particularly, fine-tune with Masked Language
Modeling (MLM), which lets BERT predict randomly masked
words in input sentences according to contexts, enables ef-
fective adaptation of the model to different domains. This
approach is therefore incorporated into our CREEK pipeline
(Section 3.3).
Positive-Unlabeled learning. Positive-Unlabeled (PU) learn-
ing is an ML technique for training a binary classifier using
only positive and unlabeled data. Formally speaking, during
training, we have labeled positive data ({xPtr

i }) together with
unlabeled data ({xUtr

i }) but are not given labeled negative



data. Suppose that thosenPtr labeled positive dataf xPtr
i g

nPtr
i= 1

follow a distributionptr (xjy = + 1), wherey 2 f + 1; � 1g is
the label ofx, and thosenUtr unlabeled dataf xUtr

i g
nUtr
i= 1 follow

a distributionptr (x):

f xPtr
i g

nPtr
i= 1

i:i:d:� ptr (xjy = + 1)

f xUtr
i g

nUtr
i= 1

i:i:d:� ptr (x) = pPtr ptr (xjy = + 1)
+ pNtr ptr (xjy = � 1)

(1)

wherepPtr := ptr (y = + 1) is the fraction of positive samples
in the training data set (including the labeled and unlabeled
samples),pNtr := ptr (y = � 1) = 1� pPtr is the fraction of
negative samples in the training data set. The goal of the PU
learning is to learn a classi�erg : Rd ! R that minimizes the
expectedrisk on the testing data following the distribution
pte(x;y) = pte(x)pte(yjx):

R te(g) := Epte(x;y) [`(yg(x))] (2)

whereEpte(x;y) denotes the expectation , and`(�) is the loss
function (e.g., the negative logarithm loss function). The ordi-
nary PU learning [17,23,59] assumes that the positive labeled
set has beenSelected Completely At Random (SCAR), and
thus it follows the same distribution as the positive samples
in the testing data set, i.e.,ptr (xjy = + 1) = pte(xjy = + 1) =
p(xjy = + 1). However, this SCAR assumption may not hold
in our SR-CR �nding scenario, because bias may be present
in the training data due to the limited knowledge of the ex-
perts (to some speci�c speci�cations). So we propose a new
learning technique to address this challenge (Section 3.2).

Self-training. A self-training mechanism iterates a teacher-
student training process till convergence: the base teacher
model is trained on a labeled set, which is applied to a sub-
set of the unlabeled data to generate their pseudo labels; a
student model can then be learned on the combination of the
labeled set and the pseudo-labeled set. At the center of this
self-training process is how to select a representative subset
of unlabeled data for producing the pseudo-labeled set. This
problem has been studied in the prior research using predic-
tive entropy [51], variation ratios [39], standard deviation and
more recently using model uncertainty, such asBayesian Ac-
tive Learning by Disagreement (BALD)[28], which selects the
unlabeled samples that maximize information gain (Eq. 10).
In our research, BALD and [42] was used in our research
to select representative unlabeled samples for self-training.
(Section 3.3).

3 Finding Security-Relevant CRs

A CR is considered to be security-relevant (that is, an SR-CR)
when it reports a problem that if not �xed, may allow secu-
rity policies to be violated by the adversary. These security
policies are meant to protect a system's con�dentiality, in-
tegrity, and availability. For instance,S3-180838provides a
protection mechanism to address an information leak risk that
the permanent identity IMSI could be exposed to the passive
or active attacker;C1-183426�xes a bidding down risk that

a User Equipment(UE) could only receive the 4G-level se-
curity protection while the network provides the 5G service;
C1-094446discloses a security weakness that the UE could
accept a message without integrity protection, allowing a fake
base station to disable the service of the UE.

Finding such SR-CRs is nontrivial. The straightforward
method, keyword search, does not work well, with a low pre-
cision and a low recall (see the last paragraph of Section 3.4).
Therefore in our research, we leveraged machine learning
(ML) techniques to classify CRs and identi�ed those security-
relevant. Development of such an ML classi�er, however, is
nontrivial, due to the dif�culty in labeling CR data, which re-
lies on experts who are often only knowledgeable about some
speci�cations. To address the labeling related challenges (as
elaborated in Section 3.1), we designed and implemented
an NLP pipeline, calledCREEK(Section 3.2 and 3.3), and
further reported our evaluations of the pipeline (Section 3.4).

3.1 Challenges in Finding SR-CRs
Challenge 1: small labeled dataset. As aforementioned,
manual labeling of the 166,657 CRs in Category F is hard, due
to the challenge in understanding the semantics of each CR,
which requires in-depth knowledge about the related 3GPP
speci�cation.C1-095712presents an example, whose conse-
quence is“The entries may be incorrectly removed from the
allowed CSG list causing persistent inability of UE to access
a CSG cell.”. It is not easy to establish its connection with
security due to the lack of knowledge about the CSG cell's
functionality. To avoid the intensive labor involved in labeling,
we searched the CR base with two keywords, “attack” and
“vulnerability”, and further manually inspected those discov-
ered to identify the CRs indeed security-relevant. In the end,
we labeled 301 SR-CRs in this way, which were later used to
train the CREEK pipeline that found 1,270 SR-CRs.
Challenge 2: positive instances only. The keyword approach,
unfortunately, cannot correctly locate non-SR-CRs. Random
sampling the whole CR dataset for manual analysis is hard
to ensure that a selected CR indeed has nothing to do with
security and privacy, given the requirement for an in-depth
understanding of all related speci�cations. So our NLP/ML
pipeline has to be built upon positive instances only.
Challenge 3: biased training set. The labeled CRs selected
using keywords may not follow the general distribution of
SR-CRs across different speci�cations. This could undermine
the effectiveness of the ML models trained on the data. In
this study, we propose an enhanced PU Learning (Positive-
Unlabeled Learning) model to address the bias.

3.2 Design
As discussed above, �nding SR-CRs is a binary text classi�-
cation problem with unlabeled data and a small set of positive
examples that is biased. To solve this problem, we designed
CREEK with the following steps: 1) embedding generation,
2) PU learning, 3) self-training. Here 1) and 3) are meant to



Figure 2: CREEK pipeline.
enrich the information carried by the small labeled set, while
2) addresses the constraint of positive instance only and the
potential bias. Figure 2 illustrates our design.
Step 1: embedding generation. The �rst step is to transfer
every sentence in each CR into an embedding, a feature vec-
tor of the same size that captures the key information of the
input sentence with a various length. This purpose can be well
served by BERT, which produces high-quality embeddings.
However direct applying pre-trained BERT does not work
well, due to its lack of domain speci�c information: we found
that only 19.8% of the top 10K most frequent words (exclud-
ing stopwords) used in 3GPP CRs also appear on the top 10K
list of the original BERT training corpus. So in our research,
we �ne-tuned a pre-trained BERT through huggingface [56]
on all 3GPP speci�cations using two tasks – masked language
modeling and binary classi�cation for security-related speci�-
cations. Note that the second task is different from (and much
easier than) �nding SR-CRs: it is meant to determine whether
a paragraph comes from a security-related speci�cation ex-
plicitly labeled by 3GPP. This task could help our �ne-tuned
BERT gain knowledge about security-related nouns in 3GPP
speci�cations including abbreviation, speci�cation number,
etc., and learn the language model of 3GPP CRs.
Step 2: PU learning. For the embeddings generated by Step
1, we need high-quality labeling for training a classi�er. How-
ever, as mentioned earlier, we only have a small set of positive
instances (Section 3.1) so we have to usePositive-Unlabeled
(PU) learning to build the classi�er. A problem here is that
the SCAR assumption (Section 2.2) may not be held, as all
these positive instances were found by keywords and there-
fore can have a different distribution than the testing distri-
bution. Such a difference is called covariate shift [52], i.e.,
ptr (x) 6= pte(x), the probability tensity of training distribution
is different from the probability tensity of testing distribution.
Inspired by the prior research [29], we developed an adversar-
ial learning framework with a classi�er C and a discriminator
D: D tries to recover the bias between the training distribu-
tion and the testing distribution, while C seeks an optimal
separation between positive instances and negative ones with
sample weights calculated from the bias recovered by D. After
convergence, our classi�er C learns how to �gure out SR-CRs
without the bias introduced by the keywords. Notice that, we
utilized 10% of the CRs to train this classi�er since training
with all CRs would trap our model so it outputs negative la-
bels for all unlabeled data, given that our positive instances
were merely 0.2% of all CRs and are easily overwhelmed by
the unlabeled data.

Step 3: self-training. After training a classi�erĈ on 10% of
unlabeled data, we further ranUncertainty-aware self-training
(UST)[42], a self-training algorithm, on the remaining 90%
to re�ne the classi�er. UST selects the unlabeled data with
less uncertainty produced bŷC and measured by BALD. This
self-training process helpŝC increase the distance between
SR-CRs and non-SR-CRs, making it more robust.

3.3 Details and Implementation
Fine-tuning BERT. We use 3GPP speci�cations as the cor-
pus for BERT �ne-tuning. Speci�cally, we established two
objectives:Masked Language Model (MLM)andSecurity
Speci�cation Classi�cation (SSC). The MLM objective is
to train our BERT to predict randomly masked words in a
sentence. We use the cross entropy loss for MLM objective.
The SSC objective is to train our BERT to judge whether a
given text belongs to security speci�cations. We use binary
cross entropy function as the loss function for SSC. We defer
details to Appendix A.1
PU learning with covariate shift. To train our SR-CR classi-
�er, we leveraged an adversarial learning framework contain-
ing a discriminatorD and a classi�erC. D tries to recover the
covariate bias, whileC seeks an unbiased classi�er with the
help of the covariate bias recovered byD.

To recover the covariate shift [52],w(x) = pte(x)
ptr (x) , we did

following transformation:
w(x) = p(xjx� pte(x))

p(xjx� ptr (x))

= p(x� pte(x)jx)p(x)=p(x� pte(x))
p(x� ptr (x)jx)p(x)=p(x� ptr (x))

= p(x� pte(x)jx)
p(x� ptr (x)jx)

p(x� ptr (x))
p(x� pte(x))

= ( 1
p(x� ptr (x)jx) � 1) p(x� ptr (x))

p(x� pte(x))

(3)

Note that, here we assume the testing and training data are
random split, and thusp(x � ptr (x)) = p(x � pte(x)) . As
a result,w(x) is only related to the probability of a given
x belonging to the training set,p(x � ptr (x)jx). Using De
Morgan's laws, we can further expandp(x � ptr (x)jx) = 1

2 +
1
2 p(x 2 Ptr jx), wherep(x 2 Ptr jx) is the probability of a given
x belonging to the labeled positive set. Note that we hope
to use the output of the discriminatorD(x) to approximate
p(x 2 Ptr jx), and thus we get:

w(x) � 1
1
2D(x)+ 1

2
� 1 = ( 1� D(x))=(1+ D(x)) (4)

Empirically, we designed the following loss functionlossD to
let D learn the distribution ofp(x 2 Ptr jx):

lossD = �
m
å

i= 1
logD(xPtr

i ) + log(1� D(xUtr
i )) (5)

wherexPtr
i is the instance in the positively labeled training set

andxUtr
i is the instance in the unlabeled training set. Notice

that we replace the instance in the testing set with the instance
in the unlabeled training set, as they have the same probability
densities.

With recovered covariate shiftw(x), the testing risk (Eq. 2)
of PU learning can be represented by:
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