PatchCleanser: Certifiably Robust Defense against

Adversarial Patches for Any Image Classifier

Chong Xiang, Saeed Mahloujifar, Prateek Mittal

Princeton University

PatchCleanser: Certifiably Robust Defense against

Adversarial Patches for Any Image Classifier

Chong Xiang, Saeed Mahloujifar, Prateek Mittal

Princeton University

PatchCleanser: Certifiably Robust Defense against

Adversarial Patches for Any Image Classifier

Chong Xiang, Saeed Mahloujifar, Prateek Mittal

Princeton University

Adversarial Patch Attack: A Variant of Adversarial Examples

- All adversarial pixels within one local region (patch)
- Optimize the patch content for test-time model misclassification
- Print and attach the patch to the physical scene -- a threat in the physical world!

How can we build robust models against adversarial patches?

How to Quantify and Evaluate Robustness?

- Usually, people use a specific attack for robustness evaluation
- <u>Problem</u>: robustness evaluated today might be compromised by smarter adaptive attackers in the future

Evading Adversarial Example Detection Defenses with Orthogonal Projected Gradient Descent

Oliver Bryniarski, Nabeel Hingun, Pedro Pachuca, Vincent Wang, Nicholas Carlini

 Can we design defenses in a special way such that we can prove their robustness against any future adaptive attack strategies?

Certifiable Robustness!

Certifiable Robustness: Formulation

Defense Model

Input Image w/ ground-truth label

Patch Threat Model

(patch sizes, shapes, and location set)

A typical patch threat model: One 2%-pixel square patch with any content at any image location

Any patch content

Robustness

Certificate

The model prediction is *always* "dog", no matter what a **white-box adaptive** attacker within the threat model does

Any patch location

Highlights of PatchCleanser

- State-of-the-art certifiable robustness against adversarial patches
 - Strong robustness guarantees!
- A minimal cost of clean performance (accuracy without attack)

 The first defense with state-of-the-art certifiable robustness and clean performance

PatchCleanser: A Pixel-Masking Defense

• Mask out the entire patch to neutralize adversarial effects

Recover correct predictions using any state-of-the-art classifier

How to mask out the patch?

(in a certifiably robust manner)

Intuition 1: Applying Small Masks to Clean Images Barely Changes Model Predictions

• We can still recognize the dog even with a small mask on the image

dog	dog	dog
dog	dog	dog
dog	dog	dog

Intuition 2: Applying Small Masks to Adversarial Images Can Change Model Predictions

 When we mask out the patch, we can get the correct prediction label back

Focus on one patch (can be extended to multiple patches)

• How to identify the correct prediction label?

Output the disagreer?

What if the attacker introduces other prediction labels?

• How to identify the correct prediction label?

Output the disagreer?

What if the attacker introduces other prediction labels?

• How to identify the correct prediction label?

Output the disagreer?

What if the attacker introduces other prediction labels?

• How to identify the correct prediction label?

Output the disagreer?

What if the attacker introduces other prediction labels?

• How to identify the correct prediction label?

How can we distinguish <u>patch-</u> <u>removing</u> masks from other masks?

Output the disagreer?

How can we distinguish between "dog" and "fox"?

Add a Second Mask!

- Analyze model predictions on images with two masks
- To determine if the first mask removes the patch or not

Case 1: the First Mask Removes the Patch

- The second mask is applied to a *clean* image
- Two-mask predictions reach a unanimous agreement

Case 2: the First Mask Does not Remove the Patch

- The second mask is applied to an *adversarial* image
- Two-mask predictions have *disagreement*

Double-masking: Defense via Two Rounds of Masking

cat

fox

Adversarial image

cat

Double-masking: Defense via Two Rounds of Masking

Robustness Certification

- Two-mask correctness implies certifiable robustness
 - Model predictions on all possible two-masked images are correct

Proof (No Math Needed): Never Return Incorrect Labels

 Mask set: at least one mask can remove the patch
Two-mask correctness: predictions on masked images without adversarial pixels are all correct

One-mask prediction

- 1. At least one correct one-mask prediction
 - A first-round mask removes the patch
- 2. Enforce disagreement with other labels (if any)
- 3. Never returns incorrect labels

Two-mask prediction

- 1. At least one correct two-mask prediction
 - A second-round mask removes the patch
- Enforce disagreement with other labels (if any)
- 3. Never returns incorrect labels

Evaluation Setup

Clean accuracy

• Fraction of correctly classified test images

Certified robust accuracy

- Fraction of test images we can certify the robustness for
- i.e., two-mask correctness

Defense Model

Patch Threat Model (patch sizes, shapes,

PatchCleanser Performance

- **ImageNet** evaluation: robustness evaluated for a 2%-pixel square patch anywhere on the image
- PatchCleanser's clean accuracy (83.9%) falls within the range of state-of-the-art undefended models (~1% accuracy drops)
- PatchCleanser's **certified robust accuracy** (62.1%) is even higher than clean accuracy of prior works

Takeaways

PatchCleanser

- pixel masking defense
- certifiable robustness for recovering correct prediction labels
- The first certified defense with 83+% accuracy on ImageNet
 - As well as state-of-the-art certifiable robustness
- Compatible with any state-of-the-art image classifiers
 - While prior works all rely on specific model architectures (e.g., small receptive fields)

leaderboard

paper list

Backup Slide: Conservative in Returning Incorrect Labels on Clean Images

Return incorrect labels when:

1. One-mask predictions agree on incorrect

2. Two-mask predictions agree on incorrect

F	cat	cat	cat
	cat	cat	cat
	cat	cat	cat

Rarely happens in the clean setting!

Backup Slide: Mask Set

- Requirement: at least one "mask" can remove all adversarial pixels
- Multiple patches

	Clean accuracy	Certified robust accuracy
two 1%-pixel squares	83.8%	45.8%
one 2%-pixel square	83.8%	63.2%

Different patch shapes

	Clean accuracy	Certified robust accuracy
Any 1%-pixel rectangle	85.4%	49.8%
Any 1%-pixel square	84.2%	68.2%

Backup Slide: Limitation

- Requires additional defense parameters for mask set generation
 - An insecure mask set undetermined the robustness

Thank you!

Chong Xiang Princeton University cxiang@princeton.edu Saeed Mahloujifar Princeton University sfar@princeton.edu

Prateek Mittal Princeton University pmittal@princeton.edu

Technical Report

<u>GitHub</u>