PatchCleanser: Certifiably Robust Defense against Adversarial Patches for Any Image Classifier

Chong Xiang, Saeed Mahloujifar, Prateek Mittal
Princeton University
PatchCleanser: Certifiably Robust Defense against Adversarial Patches for Any Image Classifier

Chong Xiang, Saeed Mahloujifar, Prateek Mittal
Princeton University
PatchCleanser: **Certifiably Robust Defense** against **Adversarial Patches** for Any Image Classifier

Chong Xiang, Saeed Mahloujifar, Prateek Mittal
Princeton University
Adversarial Patch Attack: A Variant of Adversarial Examples

• All adversarial pixels within one local region (patch)
• Optimize the patch content for test-time model misclassification
• Print and attach the patch to the physical scene -- a threat in the physical world!

“Tiger cat”
Karmon et al. [ICML 2018]

“Speed Limit 80”
Yakura et al. [AAAI 2020]

“toaster”
Brown et al. [NeurIPS W 2017]
How can we build robust models against adversarial patches?
How to Quantify and Evaluate Robustness?

- Usually, people use a specific attack for robustness evaluation.
- **Problem**: robustness evaluated today might be compromised by smarter adaptive attackers in the future.
- **Certifiable Robustness!**

Evading Adversarial Example Detection Defenses with Orthogonal Projected Gradient Descent

Oliver Bryniarski, Nabeel Hingun, Pedro Pachuca, Vincent Wang, Nicholas Carlini

- Can we design defenses in a special way such that we can prove their robustness against any future adaptive attack strategies?

- **Certifiable Robustness!**
Certifiable Robustness: Formulation

Defense Model

Input Image w/ ground-truth label

Patch Threat Model (patch sizes, shapes, and location set)

The model prediction is always “dog”, no matter what a white-box adaptive attacker within the threat model does.

A typical patch threat model: One 2%-pixel square patch with any content at any image location.

Any patch content

Any patch location
Highlights of PatchCleanser

- **State-of-the-art certifiable robustness against adversarial patches**
 - Strong robustness guarantees!
- **A minimal cost of clean performance (accuracy without attack)**
 - Prior works: >20% clean accuracy drops!
 - **PatchCleanser:** State-of-the-art clean accuracy even among undefended models!
- **The first defense with state-of-the-art certifiable robustness and clean performance**
PatchCleanser: A Pixel-Masking Defense

• Mask out the entire patch to neutralize adversarial effects

• Recover correct predictions using any state-of-the-art classifier

How to mask out the patch?
(in a certifiably robust manner)
Intuition 1: Applying Small Masks to Clean Images Barely Changes Model Predictions

- We can still recognize the dog even with a small mask on the image
Intuition 2: Applying Small Masks to Adversarial Images Can Change Model Predictions

• When we mask out the patch, we can get the correct prediction label back

Focus on one patch (can be extended to multiple patches)
Question: How Can We Settle This Disagreement?

- How to identify the correct prediction label?

Output the disagreeer?

What if the attacker introduces other prediction labels?
Question: How Can We Settle This Disagreement?

• How to identify the correct prediction label?

Output the disagreeer?

What if the attacker introduces other prediction labels?
Question: How Can We Settle This Disagreement?

• How to identify the correct prediction label?

Output the disagreeer?

dog cat cat

cat cat cat

cat fox cat

What if the attacker introduces other prediction labels?
Question: How Can We Settle This Disagreement?

• How to identify the correct prediction label?

Output the disagreeer?

What if the attacker introduces other prediction labels?
Question: How Can We Settle This Disagreement?

• How to identify the correct prediction label?

How can we distinguish patch-removing masks from other masks?

Output the disagreeer?

How can we distinguish between “dog” and “fox”?

16
Add a Second Mask!

• Analyze model predictions on images with two masks
• To determine if the first mask removes the patch or not
Case 1: the First Mask Removes the Patch

• The second mask is applied to a *clean* image
• Two-mask predictions reach a unanimous *agreement*
Case 2: the First Mask Does not Remove the Patch

• The second mask is applied to an adversarial image
• Two-mask predictions have disagreement
Double-masking: Defense via Two Rounds of Masking

Mask set generation

Apply first-round masks

Prediction agreement?

Yes → **Output prediction**

No → **Apply second-round masks**

(to every first-round masked image)

Requirement: at least one mask can remove the patch, regardless of the patch location

Clean image:
- Dog
- Dog
- Dog

Adversarial image:
- Dog
- Cat
- Cat
- Fox
- Cat
- Cat
Double-masking: Defense via Two Rounds of Masking

1. Mask set generation
2. Apply first-round masks
 - Prediction agreement?
 - Yes: Output prediction
 - No: Apply second-round masks
3. Prediction agreement?
 - Yes: Output prediction
 - No: move on to next masked image
Robustness Certification

- **Two-mask correctness** implies certifiable robustness
 - Model predictions on all possible two-masked images are correct
Proof (No Math Needed): Never Return Incorrect Labels

1. **Mask set**: at least one mask can remove the patch

 - **Two-mask correctness**: predictions on masked images without adversarial pixels are all correct

 One-mask prediction
 1. At least one correct one-mask prediction
 - A first-round mask removes the patch
 2. Enforce disagreement with other labels (if any)
 3. Never returns incorrect labels

 Two-mask prediction
 1. At least one correct two-mask prediction
 - A **second-round** mask removes the patch
 2. Enforce disagreement with other labels (if any)
 3. Never returns incorrect labels

Graphical Flowchart

- **Mask set generation**
- **Apply first-round masks**
 - **Prediction agreement?**
 - Yes → **Output prediction**
 - No → **Apply second-round masks**
 - **Prediction agreement?**
 - Yes → **Output prediction**
 - No → **Apply first-round masks**
Evaluation Setup

• **Clean accuracy**
 • Fraction of correctly classified test images

• **Certified robust accuracy**
 • Fraction of test images we can certify the robustness for
 • i.e., two-mask correctness

![Diagram showing the process of defense model, input image with ground-truth label, patch threat model, and robustness certificate.](image)
PatchCleanser Performance

- **ImageNet** evaluation: robustness evaluated for a 2%-pixel square patch anywhere on the image

- PatchCleanser’s **clean accuracy** (83.9%) falls within the range of state-of-the-art undefended models (~1% accuracy drops)

- PatchCleanser’s **certified robust accuracy** (62.1%) is even higher than clean accuracy of prior works
Takeaways

- **PatchCleanser**
 - pixel masking defense
 - certifiable robustness for recovering correct prediction labels

- **The first certified defense with 83+% accuracy on ImageNet**
 - As well as state-of-the-art certifiable robustness

- **Compatible with any state-of-the-art image classifiers**
 - While prior works all rely on specific model architectures (e.g., small receptive fields)
Backup Slide: Conservative in Returning Incorrect Labels on Clean Images

Return incorrect labels when:
1. One-mask predictions agree on incorrect labels
 - Rarely happens in the clean setting!
2. Two-mask predictions agree on incorrect labels
Backup Slide: Mask Set

- **Requirement:** at least one “mask” can remove all adversarial pixels
- **Multiple patches**

<table>
<thead>
<tr>
<th>Patch Description</th>
<th>Clean accuracy</th>
<th>Certified robust accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>two 1%-pixel squares</td>
<td>83.8%</td>
<td>45.8%</td>
</tr>
<tr>
<td>one 2%-pixel square</td>
<td>83.8%</td>
<td>63.2%</td>
</tr>
</tbody>
</table>

- **Different patch shapes**

<table>
<thead>
<tr>
<th>Patch Description</th>
<th>Clean accuracy</th>
<th>Certified robust accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any 1%-pixel rectangle</td>
<td>85.4%</td>
<td>49.8%</td>
</tr>
<tr>
<td>Any 1%-pixel square</td>
<td>84.2%</td>
<td>68.2%</td>
</tr>
</tbody>
</table>
Backup Slide: Limitation

• Requires additional defense parameters for mask set generation
 • An insecure mask set undetermined the robustness

• Trade-off between robustness and overhead
 • Requires evaluating predictions on multiple masked images

Undefended models
1. Good clean performance
2. Zero robustness
3. Good defense overhead

PatchCleanser
1. Good clean performance
2. Good certifiable robustness
3. Poor defense overhead
Thank you!

Chong Xiang
Princeton University
cxiang@princeton.edu

Saeed Mahloujifar
Princeton University
sfar@princeton.edu

Prateek Mittal
Princeton University
pmittal@princeton.edu

Technical Report
GitHub