Seeing is living? Rethinking the Security of Facial Liveness Verification in the Deepfake Era

Changjiang Li1,2, Li Wang3, Shouling Ji2, Xuhong Zhang2, Zhaohan Xi1, Shanqing Guo3, Ting Wang1

1Pennsylvania State University, College of Information Science and Technology
2Zhejiang University, College of Computer Science and Technology
3Shandong University, School of Cyber Science and Technology

USENIX Security 2022
Facial Liveness Verification (FLV)

• A growing number of security-sensitive applications use FLV in their services
 • Know Your Customer (KYC) Policy (Banking, Exchanges)
 • Cloud Vendors
• Various kinds of FLV
Facial Liveness Verification (FLV)

- FLV Pipeline
 - Step 1: User interacts with the application
 - Step 2: Capture the user’s facial images/videos
 - Step 3: Analyzing the uploaded images/videos
DeepFake

• DeepFake has raised a great interest in recent years

• DeepFake is a growing threat to cybersecurity and society
Security Question

• How is FLV vulnerable to DeepFake-powered attacks?
Approach Overview

• We design and implement LiveBugger, a framework that integrates various SOTA DeepFake techniques for evaluating the security of FLV systems.
Results

- All types of FLV are vulnerable to DeepFake-powered attacks
- Anti-DeepFake should be further improved
POC Attack

• We conduct a POC attack to demonstrate the feasibility of DeepFake-powered attack in the real world
 • Hijack video stream
 • Synthesize the fake video in a real time manner
 • Feed the fake video stream to the application
Security Insights

- Anti-DeepFake detection is necessary for FLV systems
- FLV should consider the match of lip movements with the audio signal or even voiceprint to improve the security
- Adopt actions that are hard to be synthesized by DeepFake
- Increase the diversity of actions or voice prompts
Implication

• We report our findings to the affected vendors, and receive active feedback
Conclusion

• We design and implement LiveBugger, a first-of-its-kind security evaluation framework for FLV

• An extensively evaluation demonstrates that most representative FLV systems are vulnerable to DeepFake-powered attacks

• We perform POC attacks in real-world setting

• We provide a set of suggestions to improve the security of FLV
Thanks

changjiang.li@psu.edu