Communication-Efficient Triangle Counting under Local Differential Privacy

Jacob Imola* (UCSD) Takao Murakami* (AIST) Kamalika Chaudhuri (UCSD)

Subgraph Counts
- **Triangle** is a set of 3 nodes with 3 edges.
- **k-star** consists of a central node connected to k other nodes.

<table>
<thead>
<tr>
<th>Shape</th>
<th>Name</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Triangle</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>2-star</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>3-star</td>
<td>6</td>
</tr>
</tbody>
</table>

Clustering Coefficient
- Probability that two friends of a user is also a friend. → Useful for friend suggestion.
- $= 3 \times \#\text{triangles} / \#\text{2-stars}$ (40% in the above graph).
Outline

- Privacy Issues
 - #Triangles/#k-stars can reveal sensitive edges. [Imola+, UseSec21]

- Local Differential Privacy (LDP)
 - User obfuscates her personal data by herself (i.e., no trusted third party).
 - Privacy is protected against attackers with any background knowledge.

Outline diagram:

- **Local DP**
 - Original data: \(\text{randomizer} \rightarrow \mathcal{R} \rightarrow \text{noisy data} \)

- **Centralized DP**
 - Database: \(D\)
 - Function: \(f(D) + \text{Lap.}\)
 - Illegal access
Outline

- Subgraph Counting under LDP [Imola+, UseSec21]
 - \(k\)-stars can be accurately estimated within 1 round.
 - #triangles can be accurately estimated within 2 rounds.
 - But the DL cost is extremely large, e.g., 400 Gbits (6 hours when 20 Mbps).

Our Contributions
- We dramatically reduce the DL cost with several new algorithmic ideas.
 - 400 Gbits (6 hours) \(\rightarrow\) 160 Mbits (8 seconds). 😊
Contents

Preliminaries
(LDP on Graphs, [Imola+, UseSec21])

Our Proposal
(Overview, Selective DL, Double Clipping)

Experiments
(Datasets, Experimental Results)
LDP on Graphs

- **Graph**
 - Can be represented as an adjacency matrix A (1: edge, 0: no edge).
 - User v_i knows her neighbor list a_i (i-th row of A).

- **Local Graph Model**
 - User v_i obfuscates her neighbor list a_i and sends noisy data $\mathcal{R}_i(a_i)$ to a server.
LDP on Graphs

\- Edge LDP [Qin+, CCS17]
 \- Protects a single bit in a neighbor list $a \in \{0,1\}^n$ with privacy budget ε.

Randomizer \mathcal{R} provides ε-edge LDP if for all $a, a' \in \{0,1\}^n$ that differ in one bit and all $y \in Y$,

$$\Pr[\mathcal{R}(a) = y] \leq e^\varepsilon \Pr[\mathcal{R}(a') = y]$$

\- 1 edge affects 2 elements of A \Rightarrow each edge is protected with at most 2ε.
\- Our triangle algorithm uses only \Rightarrow each edge is protected with ε.

adjacency matrix A

graph G

graph G'

Indistinguishable (at most 2ε)
Triangle Counting under LDP [Imola+, UseSec21]

- Triangles
 - Challenging because a user cannot see an edge between others.

- 1st Round
 - Each user applies RR to each bit of her neighbor list. → edge LDP.
 - Each user sends noisy edges. Server publishes noisy graph G'.
Triangle Counting under LDP [Imola+, UseSec21]

- 2nd Round
 - Each user can count **triangles including one noisy edge** using noisy graph G'.
 - Each user sends $\#$noisy triangles (+ corrective term) + Lap. \rightarrow edge LDP.
 - Server calculates an unbiased estimate of $\#$triangles.

DL cost is extremely large because G' is dense. 😞
Contents

Preliminaries
(LDP on Graphs, [Imola+, UseSec21])

Our Proposal
(Overview, Selective DL, Double Clipping)

Experiments
(Datasets, Experimental Results)
Overview

- Our Approach
 - We use asymmetric RR to make a sparse noisy graph G'.
 - DL cost is significantly reduced at the cost of the estimation error.
 - We propose two techniques (selective DL and double clipping) to reduce the error.
Selective Download

- Full DL Strategy (ARRFull)
 - User v_i downloads all noisy edges, i.e., noisy graph G'.
 - 1 noisy edge (v_j, v_k) causes 2 incorrect noisy triangles \triangle. \rightarrow Large estimation error.

- Selective DL Strategies (ARROneNS and ARRTwoNS)
 - Make the two triangles less correlated with each other by adding independent noise.
 - In ARROneNS, v_i downloads noisy edge (v_j, v_k) s.t. (v_i, v_k) is a noisy edge.
 - In ARRTwoNS, v_i downloads noisy edge (v_j, v_k) s.t. (v_i, v_j) and (v_i, v_k) are noisy edges.

<table>
<thead>
<tr>
<th>Original Graph (4-Cycle)</th>
<th>ARRFull</th>
<th>ARROneNS</th>
<th>ARRTwoNS</th>
</tr>
</thead>
<tbody>
<tr>
<td>$v_j \quad v_i \quad v_k \quad v'_i \quad v'_j \quad v'_k$</td>
<td>$v_j \quad v_i \quad v_k \quad v'_i \quad v'_j \quad v'_k$</td>
<td>$v_j \quad v_i \quad v_k \quad v'_i \quad v'_j \quad v'_k$</td>
<td>$v_j \quad v_i \quad v_k \quad v'_i \quad v'_j \quad v'_k$</td>
</tr>
</tbody>
</table>

Variance of the estimate (d_{max}: maximum degree)

- $O(nd_{\text{max}}^3)$
- $O(nd_{\text{max}}^2)$
- $O(nd_{\text{max}}^2)$
Double Clipping

Laplacian Noise

- [Imola+, UseSec21] added $\text{Lap}\left(\frac{d_{\text{max}}}{\varepsilon}\right)$ (d_{max}: maximum degree) at the 2nd round.
- But the sensitivity of #noisy triangles is much smaller than d_{max} because:
 1. User v_i’s degree d_i is much smaller than d_{max}.
 2. Noisy edges are sparse. → #noisy triangles involving (v_i, v_j) is much smaller than d_i.

Double Clipping

- Dramatically reduces sensitivity by (1) edge clipping and (2) noisy triangle clipping.
Double Clipping

- **Edge Clipping**
 - Add the Laplacian noise (+ non-negative value) to user v_i’s degree d_i.
 - If d_i exceeds the noisy degree \tilde{d}_i, remove edges to ensure $d_i \leq \tilde{d}_i$.

- **Noisy Triangle Clipping**
 - If #noisy triangles exceeds a threshold κ_i, reduce it to ensure #noisy triangles $\leq \kappa_i$.
 - We set κ_i s.t. the triangle excess probability is very small, e.g., 10^{-6}.

We use κ_i ($\ll d_{max}$) as the sensitivity.
Contents

Preliminaries
(LDP on Graphs, [Imola+, UseSec21])

Our Proposal
(Overview, Selective DL, Double Clipping)

Experiments
(Datasets, Experimental Results)
Datasets

- **Gplus (Google+ Dataset)**
 - Social graph with 107614 nodes (users).
 - Average degree = 113.7.

- **IMDB (Internet Movie Database)**
 - Graph with 896308 nodes (actors).
 - Average degree = 63.7. More sparse than Gplus.
Experimental Results

- **Result 1: Relative Error vs. DL Cost**
 - Our proposals download user IDs for 1 (edges).
 - \([\text{Imola +, UseSec21}]\) downloads 0/1 for each user-pair \(\rightarrow\) 6G (Gplus) and 400G (IMDB).
 - In IMDB, our proposals achieve 160M bits with high accuracy (relative error \(\ll 1\)).

Gplus (\(\varepsilon = 1\))

- **[Imola +, UseSec21]**

IMDB (\(\varepsilon = 1\))

- **[Imola +, UseSec21]**

Data Points

- **Gplus**
 - \(190K\) 1.9M 19M 190M 1.9G 19G 190G
 - Relative Error
 - DL Cost (bits) 1.6G 16G 160G 16T

- **IMDB**
 - \(16M\) 160M 1.6G 16G 160G
 - Relative Error
 - DL Cost (bits) 1.6T 16T
Result 2: Full DL vs. Selective DL

- Selective DL significantly outperforms Full DL.
- ARROneNS outperforms ARRTwoNS. In ARRTwoNS, all noisy triangles have noisy edge \((v_i, v_j)\) in common and the sensitivity is not effectively reduced by double clipping.

Experiments

<table>
<thead>
<tr>
<th></th>
<th>Relative Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gplus ((\varepsilon = 1))</td>
<td>0.08</td>
</tr>
<tr>
<td>Gplus ((\varepsilon = 2))</td>
<td>0.06</td>
</tr>
<tr>
<td>IMDB ((\varepsilon = 1))</td>
<td>0.04</td>
</tr>
<tr>
<td>IMDB ((\varepsilon = 2))</td>
<td>0.02</td>
</tr>
</tbody>
</table>

DL Cost = 190 Mbits

DL Cost = 16 Gbits

- **ARRFull** (double clipping)
- **ARROneNS** (double clipping)
- **ARRTwoNS** (double clipping)
Conclusions

This Work
- We proposed communication-efficient triangle counting under LDP with new algorithmic ideas: asymmetric RR, selective DL, and double clipping.

Future Work: 1-Round Triangle Counting
- We showed that this is possible in the shuffle model: https://arxiv.org/abs/2205.01429
- We would like to investigate whether this is possible under the local model.

400 Gbits (6 hours) \rightarrow 160 Mbits (8 seconds)
Thank you for your attention!

Q&A

jimola at eng.ucsd.edu, takao-murakami at aist.go.jp