
BrakTooth: Causing Havoc on Bluetooth
Link Manager via Directed Fuzzing

Matheus Eduardo Garbelini1

Vaibhav Bedi1

Sudipta Chattopadhyay1

Sun Sumei2

Ernest Kurniawan2

1 ASSET Research Group, Singapore University of Technology and Design (SUTD)
2 Institute for Infocomm Research, A*Star

https://asset-group.github.io/

2

Motivation – Wireless Fuzzing

1. Higher protocol complexity usually means more bugs to find;
2. Lack of freedom to inject (fuzz) packets over-the-air;
 Closed Source implementations;
 Wireless timing constraints makes fuzzing more difficult;

3. Current BT fuzzing approaches either require manual generation of inputs
(too complex) or generate too many invalid input (mutation).
 Need for a more generalized wireless fuzzing approach.

Standard Fuzzing Workflow

3

Our Approach and Targets – Bluetooth Classic Fuzzing

Other BT Classic Fuzzers – How we compare to state-of-art?

+ No special BT Hardware required
- Target only BT Host Layers

+ Test Arbitrary BT SoCs
- Fuzzing is Slower

+ Fuzzing is Fast
- Specific SoC ArchitecturesTrade-offs

Our Fuzzing Focus

BT Protocol Stack

Standard BT Architecture

BT Device

Our Work

4

General Over-the-Air Fuzzing Workflow
Fuzzing Components

Target Monitoring is
detailed on the paper

5

1. Fuzzing Workflow - Protocol State Mapping

Mapped States
• Used for the fuzzer to know the current state during fuzzing;
• Used to detect “unexpected” responses that may indicate vulnerabilities or non-compliance

Provided by the user or received via live communication.

Example:

Intuition: “Type” fields of packets can inform the protocol state during communication.

6

2. Fuzzing Workflow - Directed Fuzzing

Fuzzing and Optimization

Mutation Probabilities is an array
which contains the fuzzing chances
of protocol layers for each state.

TX Packet
(To be fuzzed)

Delivered to
Target (Mutated)

RX Packet
(From Target)

Example:

Mutation Probabilities

How the array is optimized? Via Particle Swarm Optimization (PSO)
Cost Function: Maximize Transition Coverage
(Number of transitions in state machine.)

Mapped
States

Intuition: Directing the fuzzing towards fields or layers that contribute to more state transitions

7

3. Fuzzing Interface - Reverse Engineering ESP32 BT Stack
Intuition: Interception! Taking over the packet control from the BT Stack

Static SDK Library: libbtdm_app.aPatching Strategies:
1. Pathing the final binary;
2. Patching ROM via user code (runtime);

• Real-time Requirement: < 625us of Round Trip Time between host PC and ESP32 firmware!
 Make use of USB High Speed (FT2232H IC)

Exploitation via “Dissection Hooks” is detailed on the paper!
User Exploits (Dissection Hooks API)

RX
TX

8

Evaluation – Design Choices Comparison

Unique crashes/deadlocks w.r.t ESP32 fuzzing iterations.

How different components affect the fuzzing process?

Main takeaways:
• Duplication or Mutation alone cannot find all bugs;
• Duplication + Mutation compete with each other, thus delaying the “All” variant.

9

Evaluation – Summary

• Evaluated 13 BT devices from 11 vendors
(Intel, Qualcomm, Cypress, etc);
 Discovered a total of 18 unknown

implementation flaws (24 CVEs);
 Vulnerabilities classified as “Crashes”

or “Deadlocks”;
 1 RCE on ESP32 (CVE-2021-28138);
 6 Bug Bounties awarded!

(Intel, Espressif Systems and Xiaomi)

Summary of unknown implementation bugs and other
anomalies found (Vx: Vulnerability, Ax: Non-compliance).

10

Evaluation - Extensions

Summary of unknown flaws found by fuzzing extension.

• Created Wi-Fi AP and BLE Host fuzzer variants;
 Required changes: Protocol Stack, Fuzzing Interface and Mapping Rules;

• Wi-Fi and BLE Host fuzzing variants discovered other 6 unknown bugs;

11

Conclusion

• Impact: Exposed firmware bugs and non-compliances in hundreds BT SoC models,
affecting IoTs, Laptops, Smartphones and Audio products across the industry.
 Independent testing has revealed other SoC vendors to be affected such as

Mediatek, Samsung, Airoha, Apple;
 Highlighted the need for more security-oriented Over-the-Air testing tools;

• Lower the cost for Bluetooth Classic experimentation with ESP32 (~5 USD);
• Fuzzer design can be generalized to other protocols (e.g: Wi-Fi, BLE Host);
• Requires proper monitoring configuration, otherwise crashes are missed.
 Expected disadvantage for a OTA fuzzer.

Code Availability:
ESP32 Patching Framework: https://github.com/Matheus-Garbelini/esp32_firmware_patching_framework
Fuzzer Runtime and PoC: https://github.com/Matheus-Garbelini/braktooth_esp32_bluetooth_classic_attacks
Fuzzer Source Code (academic research only): https://src.braktooth.com/

Disclosure: https://braktooth.com/

https://github.com/Matheus-Garbelini/esp32_firmware_patching_framework
https://github.com/Matheus-Garbelini/braktooth_esp32_bluetooth_classic_attacks
https://src.braktooth.com/
https://braktooth.com/

	BrakTooth: Causing Havoc on Bluetooth Link Manager via Directed Fuzzing
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11

