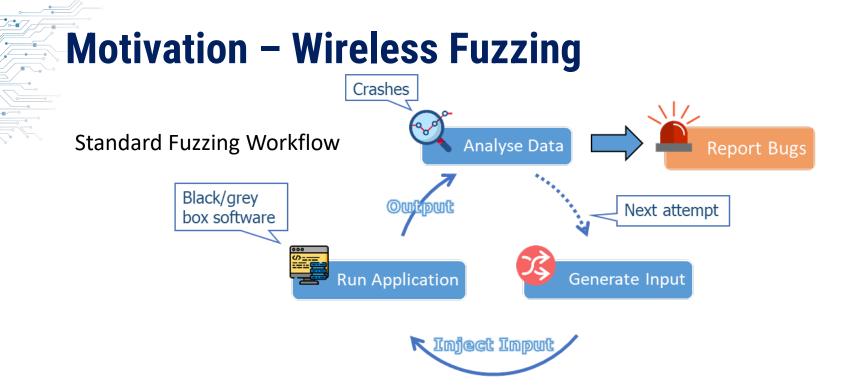
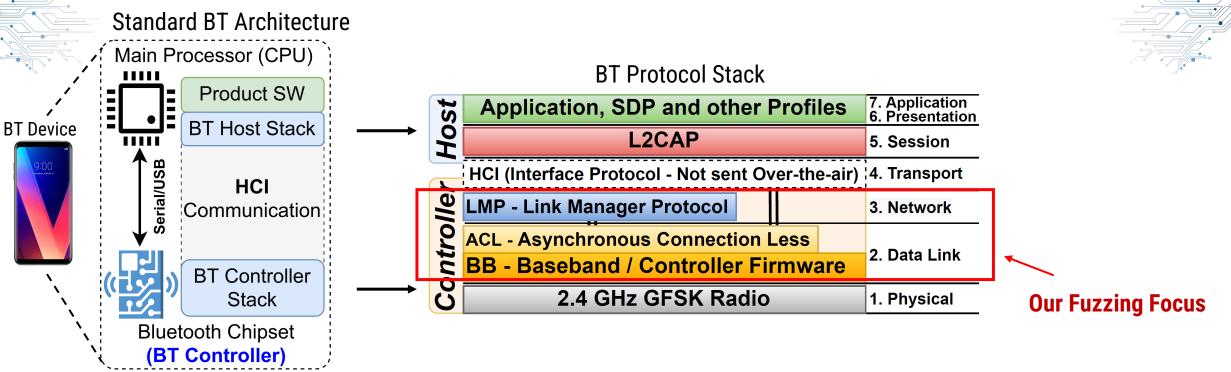
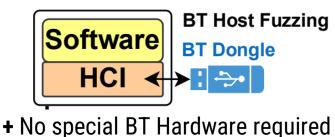
BrakTooth: Causing Havoc on Bluetooth Link Manager via Directed Fuzzing


<u>Matheus Eduardo Garbelini</u>¹ Vaibhav Bedi¹ Sudipta Chattopadhyay¹ Sun Sumei² Ernest Kurniawan²

¹ <u>ASSET Research Group</u>, Singapore University of Technology and Design (SUTD) ² Institute for Infocomm Research, A*Star

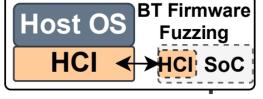


Institute for Infocomm Research

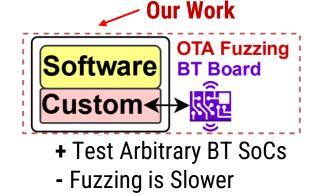


- 1. Higher protocol complexity usually means more bugs to find;
- 2. Lack of freedom to inject (fuzz) packets over-the-air;
 - Closed Source implementations;
 - Wireless timing constraints makes fuzzing more difficult;
- 3. Current BT fuzzing approaches either require manual generation of inputs (too complex) or generate too many invalid input (mutation).
 - Need for a more generalized wireless fuzzing approach.

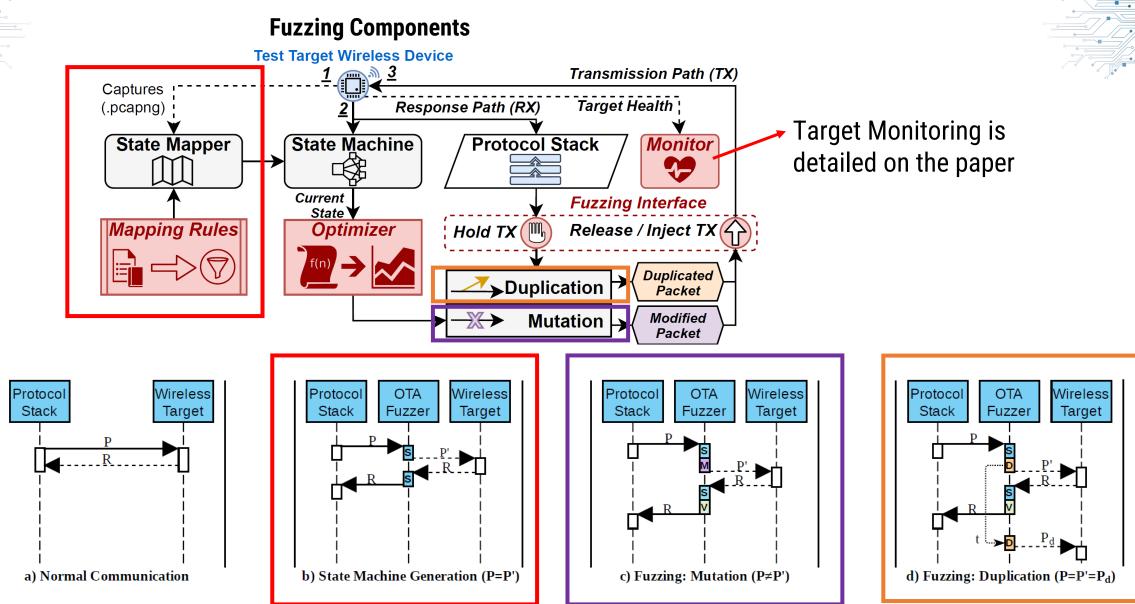
Our Approach and Targets – Bluetooth Classic Fuzzing



Other BT Classic Fuzzers – How we compare to state-of-art?


- Target only BT Host Layers

Trade-offs



+ Fuzzing is Fast

- Specific SoC Architectures

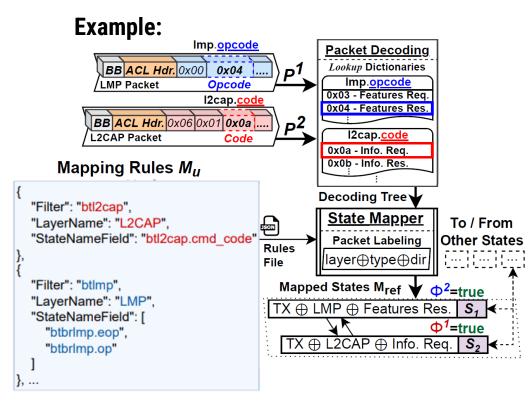
General Over-the-Air Fuzzing Workflow

1. Fuzzing Workflow - Protocol State Mapping

Intuition: "Type" fields of packets can inform the protocol state during communication.

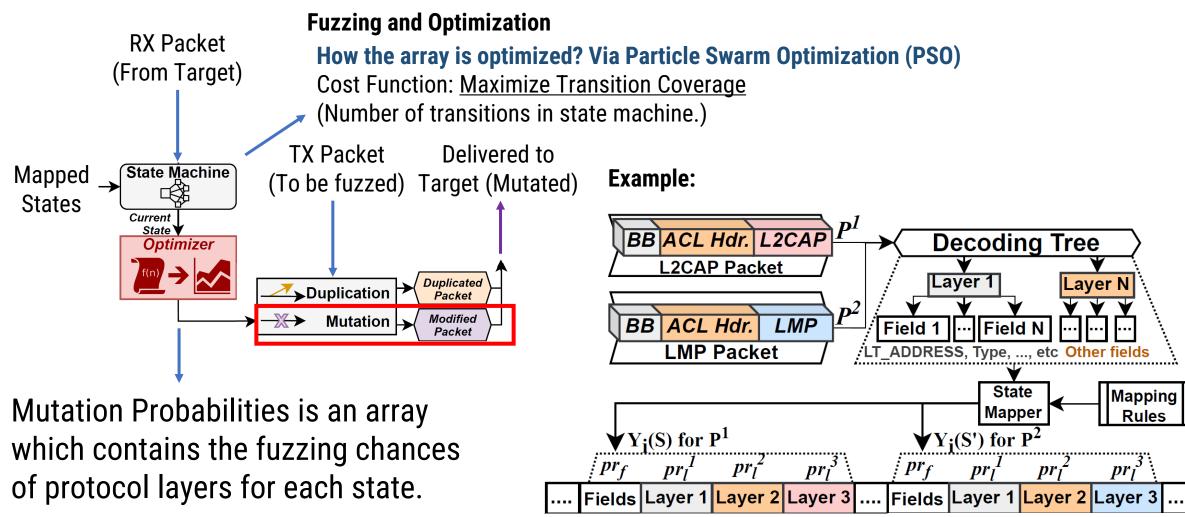
—— Provided by the user or received via live communication.

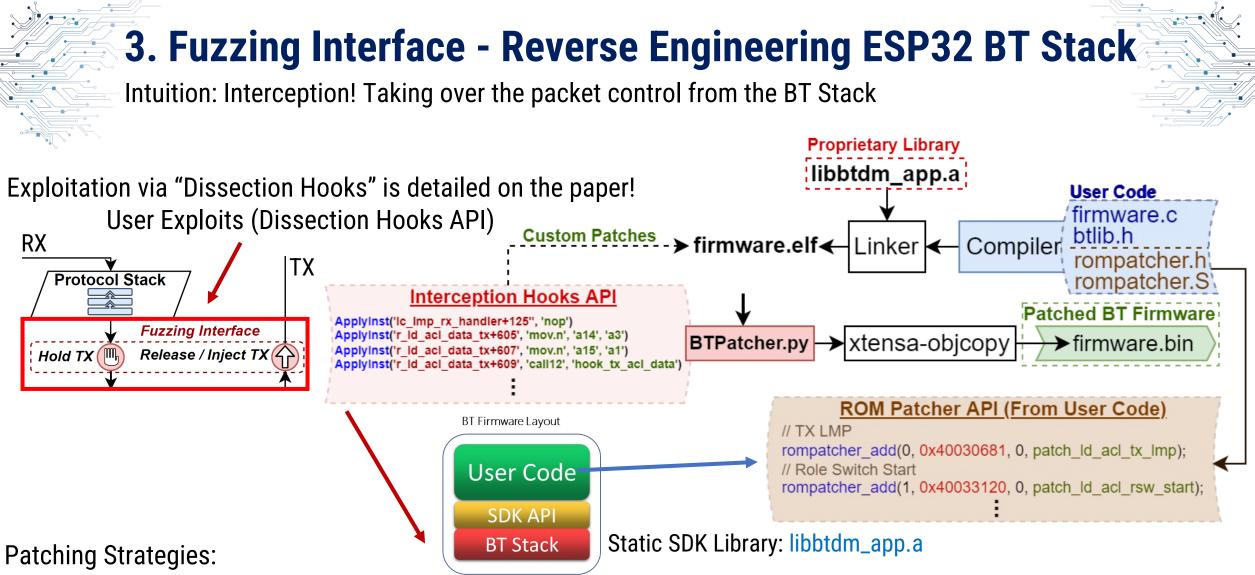
Mapped States


- Used for the fuzzer to know the current state during fuzzing;
- Used to detect "unexpected" responses that may indicate vulnerabilities or non-compliance

State Mapper

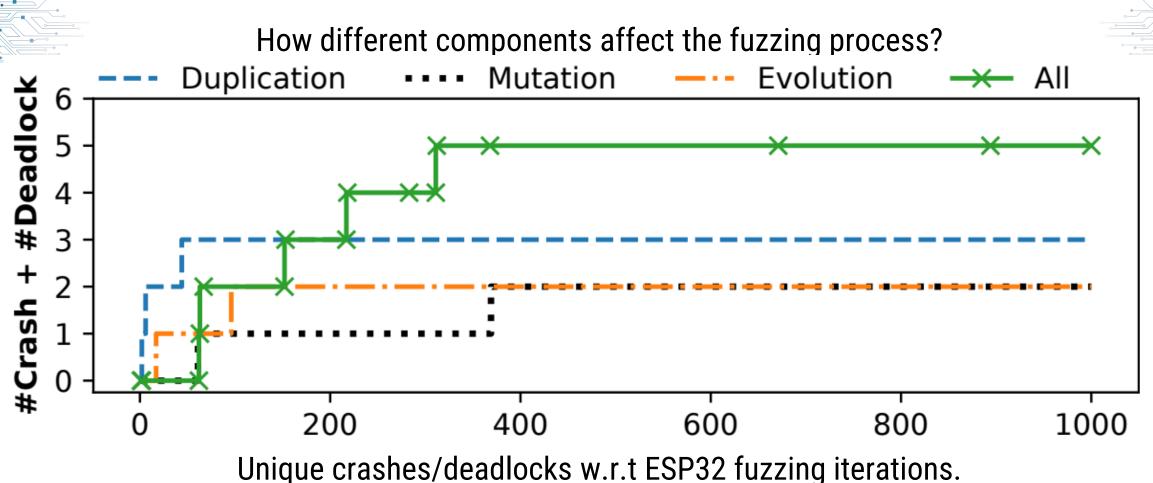
Captures (.pcapng)


```
Mapping Rules M<sub>u</sub>
```

2. Fuzzing Workflow - Directed Fuzzing

Intuition: Directing the fuzzing towards fields or layers that contribute to more state transitions



Mutation Probabilities

- 1. Pathing the final binary;
- 2. Patching ROM via user code (runtime);
- Real-time Requirement: < 625us of Round Trip Time between host PC and ESP32 firmware!
 - Make use of USB High Speed (FT2232H IC)

Evaluation – Design Choices Comparison

Main takeaways:

- Duplication or Mutation alone cannot find all bugs;
- Duplication + Mutation compete with each other, thus delaying the "All" variant.

Evaluation – Summary

- Evaluated 13 BT devices from 11 vendors (Intel, Qualcomm, Cypress, etc);
 - Discovered a total of 18 unknown implementation flaws (24 CVEs);
 - Vulnerabilities classified as "Crashes" or "Deadlocks";
 - > 1 RCE on ESP32 (CVE-2021-28138);
 - 6 Bug Bounties awarded!(Intel, Espressif Systems and Xiaomi)

Summary of unknown implementation bugs and other anomalies found (Vx: Vulnerability, Ax: Non-compliance).

Anomalies	CVE ID(s)	Device(s)
V1 Feature Pages Execution	CVE-2021-28139	ESP-WROVER-KIT
V2 Invalid Public Key	CVE-2021-28138	ESP-WROVER-KIT
V3 Feature Req. Ping-Pong	CVE-2021-28137	ESP-WROVER-KIT
V4 Duplicated IOCAP	CVE-2021-28136	ESP-WROVER-KIT
V5 Feature Resp. Flooding	CVE-2021-28135	ESP-WROVER-KIT
	CVE-2021-28155	JBL TUNE500BT
	CVE-2021-31717	Xiaomi MDZ-36-DB
V6 LMP Auto Rate Overflow	CVE-2021-31609	DKWT32I-A
VO LIMP Auto Kate Overnow	CVE-2021-31612	BT Audio Receiver
V7 LMP 2-DH1 Overflow	CVE-2021-35093	DVK-BT900-SA
V8 LMP DM1 Overflow	CVE-2021-34150	AB32VG1
V9 Truncated LMP Accepted	CVE-2021-31613	BT Audio Receiver
		XY-WRBT Module
V10 Invalid Satur Complete	CVE-2021-31611	BT Audio Receiver
V10 Invalid Setup Complete		XY-WRBT Module
V11 Host Conn. Flooding	CVE-2021-31785	Xiaomi MDZ-36-DB
V12 Same Host Connection	CVE-2021-31786	Xiaomi MDZ-36-DB
	CVE-2021-31610	AB32VG1
V13 AU Rand Flooding	CVE-2021-34149	CC256XCQFN-EM
	CVE-2021-34146	CYW920735Q60EVB
V14 Invalid Max Slot Type	CVE-2021-34145	CYW920735Q60EVB
V15 Max Slot Length Overflow	CVE-2021-34148	CYW920735Q60EVB
	CVE-2021-34147	CYW920735Q60EVB
V16 Invalid Timing Accuracy	CVE-2021-30348	Pocophone F1
	CVE-2021-33139	Intel AX200
V17 Paging Scan Deadlock	CVE-2021-33155	Intel AX200
V18 SDP Element Size Overflow	Pending	Beken BK3260N
A1 Accepts Lower LMP Length	N.A	All, except ESP32
A2 Accepts Higher LMP Length	N.A	All tested devices
A3 Multiple Encryption Start	N.A	Xiaomi MDZ-36-DB
A4 Ignore Role Switch Reject	N.A	Pocophone F1
A 5 Invalid Basponse	N.A	Intel AX200
A5 Invalid Response	13.73	DVK-BT900-SA
A6 Ignore Encryption Stop	N.A	CYW920735Q60EVB

Evaluation - Extensions

- Created Wi-Fi AP and BLE Host fuzzer variants;
 Required changes: <u>Protocol Stack</u>, <u>Fuzzing Interface</u> and <u>Mapping Rules</u>;
- Wi-Fi and BLE Host fuzzing variants discovered other 6 unknown bugs;

Summary of unknown flaws found by fuzzing extension.

Extension	Stack	Target	Vulnerability	CVE (New)
BLE Host	Bluekitchen	ESP32	Null Dereference	CVE-2022-26604
		Telink TLSR8258	Re-Advertisement DoS	CVE-2022-26602
		NXP KW41Z	-	-
		TI CC2540	-	-
Wi-Fi AP	Hostapd	ESP32	EAP Heap Overflow	CVE-2022-26603
			Association Deadlock	CVE-2022-26600
		ESP8266	Association Crash	CVE-2022-26601
		Rasp. Pi 3 B	Probe Resp. Deadlock	CVE-2022-26599
		One Plus 5T	-	-

Conclusion Disclosure: <u>https://braktooth.com/</u>

- Impact: Exposed firmware bugs and non-compliances in hundreds BT SoC models, affecting IoTs, Laptops, Smartphones and Audio products across the industry.
 - Independent testing has revealed other SoC vendors to be affected such as Mediatek, Samsung, Airoha, Apple;
 - Highlighted the need for more security-oriented Over-the-Air testing tools;
- Lower the cost for Bluetooth Classic experimentation with ESP32 (~5 USD);
- Fuzzer design can be generalized to other protocols (e.g: Wi-Fi, BLE Host);
- Requires proper monitoring configuration, otherwise crashes are missed.
 - > Expected disadvantage for a OTA fuzzer.

Code Availability:

ESP32 Patching Framework: <u>https://github.com/Matheus-Garbelini/esp32_firmware_patching_framework</u> Fuzzer Runtime and PoC: <u>https://github.com/Matheus-Garbelini/braktooth_esp32_bluetooth_classic_attacks</u> Fuzzer Source Code (academic research only): <u>https://src.braktooth.com/</u>