
Rapid Prototyping for Microarchitectural Attacks

USENIX Security Symposium 2022

Catherine Easdon
Dynatrace Research & Graz

University of Technology

Michael Schwarz
CISPA Helmholtz Center for

Information Security

Martin Schwarzl
Graz University of Technology

Daniel Gruss
Graz University of Technology

Motivation

#define pointer_chaser

*((uintptr_t *) ********(uintptr_t ********) chase_me [8])

#define speculation_end(label)

asm goto("jmp %l0" : : : "memory" : label);

label## _retp: asm goto("lea %l0(%%rip), %%rax\nmovq %%rax ,(%% rsp)\nret\n" : :

: "memory", "rax" : label);

label: asm volatile("nop");

// try to get JIT to use shl instead of imul

index = (((index << 12)|0) & (32*1024*1024 -1))|0;

// try to trigger collision in PHT

if(temp [0] < 1024) temp [0] ^= arg;

if(temp [0] < 1024) temp [0] ^= arg;

// repeat *100(ish)

1 USENIX Security ’22 Catherine Easdon (7@cat easdon) — Dynatrace Research & TU Graz

Motivation

• Microarchitectural attacks are complex to implement

• This slows progress in attack research and is a barrier to

entry

• It makes teaching microarchitectural security challenging

• It increases the risk that attack mitigations are incomplete

2 USENIX Security ’22 Catherine Easdon (7@cat easdon) — Dynatrace Research & TU Graz

Motivation

• Microarchitectural attacks are complex to implement

• This slows progress in attack research and is a barrier to

entry

• It makes teaching microarchitectural security challenging

• It increases the risk that attack mitigations are incomplete

2 USENIX Security ’22 Catherine Easdon (7@cat easdon) — Dynatrace Research & TU Graz

Motivation

• Microarchitectural attacks are complex to implement

• This slows progress in attack research and is a barrier to

entry

• It makes teaching microarchitectural security challenging

• It increases the risk that attack mitigations are incomplete

2 USENIX Security ’22 Catherine Easdon (7@cat easdon) — Dynatrace Research & TU Graz

Motivation

• Microarchitectural attacks are complex to implement

• This slows progress in attack research and is a barrier to

entry

• It makes teaching microarchitectural security challenging

• It increases the risk that attack mitigations are incomplete

2 USENIX Security ’22 Catherine Easdon (7@cat easdon) — Dynatrace Research & TU Graz

Motivation

• What does the attack development process look like in these

three contexts: research, teaching, and mitigation?

• How similar are they?

• Could we facilitate the development process for all three?

3 USENIX Security ’22 Catherine Easdon (7@cat easdon) — Dynatrace Research & TU Graz

Motivation

• What does the attack development process look like in these

three contexts: research, teaching, and mitigation?

• How similar are they?

• Could we facilitate the development process for all three?

3 USENIX Security ’22 Catherine Easdon (7@cat easdon) — Dynatrace Research & TU Graz

Motivation

• What does the attack development process look like in these

three contexts: research, teaching, and mitigation?

• How similar are they?

• Could we facilitate the development process for all three?

3 USENIX Security ’22 Catherine Easdon (7@cat easdon) — Dynatrace Research & TU Graz

Systematization

Methodology

Literature

Review

All top 4 papers

2015-20

Expert

Interviews

8 academia

8 industry

User

Study

28 graduate

students

4 USENIX Security ’22 Catherine Easdon (7@cat easdon) — Dynatrace Research & TU Graz

Research Topics

Attack Building

Blocks

Microarchitectural

Control

Languages and

Tooling

Development

Process

5 USENIX Security ’22 Catherine Easdon (7@cat easdon) — Dynatrace Research & TU Graz

Key Insights

• Evolutionary prototyping (5/10 interviewees) vs. throwaway

prototyping

• Always begin in C/ASM for maximum control

• Custom drivers or a custom OS often required for privileged

building blocks

• PoCs can be powerful communication tools, but complexity

makes them less effective

6 USENIX Security ’22 Catherine Easdon (7@cat easdon) — Dynatrace Research & TU Graz

Key Insights

• Evolutionary prototyping (5/10 interviewees) vs. throwaway

prototyping

• Always begin in C/ASM for maximum control

• Custom drivers or a custom OS often required for privileged

building blocks

• PoCs can be powerful communication tools, but complexity

makes them less effective

6 USENIX Security ’22 Catherine Easdon (7@cat easdon) — Dynatrace Research & TU Graz

Key Insights

• Evolutionary prototyping (5/10 interviewees) vs. throwaway

prototyping

• Always begin in C/ASM for maximum control

• Custom drivers or a custom OS often required for privileged

building blocks

• PoCs can be powerful communication tools, but complexity

makes them less effective

6 USENIX Security ’22 Catherine Easdon (7@cat easdon) — Dynatrace Research & TU Graz

Key Insights

• Evolutionary prototyping (5/10 interviewees) vs. throwaway

prototyping

• Always begin in C/ASM for maximum control

• Custom drivers or a custom OS often required for privileged

building blocks

• PoCs can be powerful communication tools, but complexity

makes them less effective

6 USENIX Security ’22 Catherine Easdon (7@cat easdon) — Dynatrace Research & TU Graz

Frameworks

libtea

Cross-platform attack development API

• 142 functions for common attack building blocks

• Linux, Windows, Android (x86, AArch64, limited PPC64)

• Single C header with supporting kernel driver

• Builds upon the PTEditor and SGX-Step frameworks

7 USENIX Security ’22 Catherine Easdon (7@cat easdon) — Dynatrace Research & TU Graz

libtea

Cross-platform attack development API

• 142 functions for common attack building blocks

• Linux, Windows, Android (x86, AArch64, limited PPC64)

• Single C header with supporting kernel driver

• Builds upon the PTEditor and SGX-Step frameworks

7 USENIX Security ’22 Catherine Easdon (7@cat easdon) — Dynatrace Research & TU Graz

libtea

Cross-platform attack development API

• 142 functions for common attack building blocks

• Linux, Windows, Android (x86, AArch64, limited PPC64)

• Single C header with supporting kernel driver

• Builds upon the PTEditor and SGX-Step frameworks

7 USENIX Security ’22 Catherine Easdon (7@cat easdon) — Dynatrace Research & TU Graz

libtea

Cross-platform attack development API

• 142 functions for common attack building blocks

• Linux, Windows, Android (x86, AArch64, limited PPC64)

• Single C header with supporting kernel driver

• Builds upon the PTEditor and SGX-Step frameworks

7 USENIX Security ’22 Catherine Easdon (7@cat easdon) — Dynatrace Research & TU Graz

libtea

Cross-platform attack development API

• 142 functions for common attack building blocks

• Linux, Windows, Android (x86, AArch64, limited PPC64)

• Single C header with supporting kernel driver

• Builds upon the PTEditor and SGX-Step frameworks

7 USENIX Security ’22 Catherine Easdon (7@cat easdon) — Dynatrace Research & TU Graz

SCFirefox

• Provides libtea cache and paging functions in JS

• Available in the Spidermonkey shell and directly in the

browser

• Limitation: overhead from the JSAPI wrapper

8 USENIX Security ’22 Catherine Easdon (7@cat easdon) — Dynatrace Research & TU Graz

SCFirefox

• Provides libtea cache and paging functions in JS

• Available in the Spidermonkey shell and directly in the

browser

• Limitation: overhead from the JSAPI wrapper

8 USENIX Security ’22 Catherine Easdon (7@cat easdon) — Dynatrace Research & TU Graz

SCFirefox

• Provides libtea cache and paging functions in JS

• Available in the Spidermonkey shell and directly in the

browser

• Limitation: overhead from the JSAPI wrapper

8 USENIX Security ’22 Catherine Easdon (7@cat easdon) — Dynatrace Research & TU Graz

Rapid Prototyping

Hypothesis libtea SCFirefox Attack PoC

9 USENIX Security ’22 Catherine Easdon (7@cat easdon) — Dynatrace Research & TU Graz

Case Study: Zombieload.js

ZombieLoad

• Sample data from the line fill buffers [Sch+19b]

• Triggered by a ‘zombie load’ that faults and triggers a

microcode assist

• Data is transiently returned - but not the data we tried to

access!

10 USENIX Security ’22 Catherine Easdon (7@cat easdon) — Dynatrace Research & TU Graz

ZombieLoad

• Sample data from the line fill buffers [Sch+19b]

• Triggered by a ‘zombie load’ that faults and triggers a

microcode assist

• Data is transiently returned - but not the data we tried to

access!

10 USENIX Security ’22 Catherine Easdon (7@cat easdon) — Dynatrace Research & TU Graz

ZombieLoad

• Sample data from the line fill buffers [Sch+19b]

• Triggered by a ‘zombie load’ that faults and triggers a

microcode assist

• Data is transiently returned - but not the data we tried to

access!

10 USENIX Security ’22 Catherine Easdon (7@cat easdon) — Dynatrace Research & TU Graz

CPU Microarchitecture

[Sch19]

11 USENIX Security ’22 Catherine Easdon (7@cat easdon) — Dynatrace Research & TU Graz

Case Study: zombieload.js

For ZombieLoad variant 3, we need four building blocks:

1. Two mappings for the same physical address

2. Accessed bit cleared on one mapping to trigger a microcode

assist

3. A way to flush the other mapping at the same time

4. A way to transiently encode and recover the leaked data

12 USENIX Security ’22 Catherine Easdon (7@cat easdon) — Dynatrace Research & TU Graz

Case Study: zombieload.js

For ZombieLoad variant 3, we need four building blocks:

1. Two mappings for the same physical address

2. Accessed bit cleared on one mapping to trigger a microcode

assist

3. A way to flush the other mapping at the same time

4. A way to transiently encode and recover the leaked data

12 USENIX Security ’22 Catherine Easdon (7@cat easdon) — Dynatrace Research & TU Graz

Case Study: zombieload.js

For ZombieLoad variant 3, we need four building blocks:

1. Two mappings for the same physical address

2. Accessed bit cleared on one mapping to trigger a microcode

assist

3. A way to flush the other mapping at the same time

4. A way to transiently encode and recover the leaked data

12 USENIX Security ’22 Catherine Easdon (7@cat easdon) — Dynatrace Research & TU Graz

Case Study: zombieload.js

For ZombieLoad variant 3, we need four building blocks:

1. Two mappings for the same physical address

2. Accessed bit cleared on one mapping to trigger a microcode

assist

3. A way to flush the other mapping at the same time

4. A way to transiently encode and recover the leaked data

12 USENIX Security ’22 Catherine Easdon (7@cat easdon) — Dynatrace Research & TU Graz

Case Study: zombieload.js

For ZombieLoad variant 3, we need four building blocks:

1. Two mappings for the same physical address

2. Accessed bit cleared on one mapping to trigger a microcode

assist

3. A way to flush the other mapping at the same time

4. A way to transiently encode and recover the leaked data

12 USENIX Security ’22 Catherine Easdon (7@cat easdon) — Dynatrace Research & TU Graz

ZombieLoad v3 with libtea

libtea_instance* instance = libtea_init (); libtea_pin_to_core (0,3);

libtea_calibrate_flush_reload(instance);

char* map1 = libtea_open_shared_memory (4096 , NULL); memset(map1 , "1", 4096);

char* map2 = libtea_remap_address(instance , (size_t) map1 , LIBTEA_PAGE , 4096,

LIBTEA_READ_WRITE , true);

libtea_clear_addr_page_bit(instance , map2 , 0, LIBTEA_PAGE_BIT_ACCESSED);

while (true) {

libtea_flush(map1);

libtea_speculation_start(spec);

libtea_access (0);

libtea_cache_encode(instance , map2 [0]*4096);

libtea_speculation_end(spec);

libtea_cache_decode_histogram_iteration(instance ,true ,true ,0,"A","Z",hist);

}

13 USENIX Security ’22 Catherine Easdon (7@cat easdon) — Dynatrace Research & TU Graz

ZombieLoad v3 with libtea

libtea_page_entry p = libtea_resolve_addr(instance ,

map1 , 0);

libtea_print_page_entry(p.pte);

libtea_page_entry p2 = libtea_resolve_addr(instance ,

map2 , 0);

libtea_print_page_entry(p2.pte);

+--+----------+-+-+-+-+-+-+-+-+--+--+-+-+-+

|NX| PFN |H|?|?|?|G|S|D|A|UC|WT|U|W|P|

| 1| 0x30113d |1|0|0|0|0|0|1|1| 0| 0|1|1|1|

+--+----------+-+-+-+-+-+-+-+-+--+--+-+-+-+

+--+----------+-+-+-+-+-+-+-+-+--+--+-+-+-+

|NX| PFN |H|?|?|?|G|S|D|A|UC|WT|U|W|P|

| 1| 0x30113d |1|0|0|1|0|0|0|0| 0| 0|1|1|1|

+--+----------+-+-+-+-+-+-+-+-+--+--+-+-+-+

Leakage! We see that the sibling

hyperthread (core 7) is loading ‘X’.

14 USENIX Security ’22 Catherine Easdon (7@cat easdon) — Dynatrace Research & TU Graz

Prototyping with libtea

• Memory deduplication provides shared mappings and clears

the accessed bit for us ✓

• Can we leak without a flush?

Discovery

clflush is not needed - a speculative access of map1

induces a cache-line conflict, making ZombieLoad feasible in

a sandbox �

15 USENIX Security ’22 Catherine Easdon (7@cat easdon) — Dynatrace Research & TU Graz

Prototyping with libtea

• Memory deduplication provides shared mappings and clears

the accessed bit for us ✓

• Can we leak without a flush?

Discovery

clflush is not needed - a speculative access of map1

induces a cache-line conflict, making ZombieLoad feasible in

a sandbox �

15 USENIX Security ’22 Catherine Easdon (7@cat easdon) — Dynatrace Research & TU Graz

Prototyping with libtea

• Memory deduplication provides shared mappings and clears

the accessed bit for us ✓

• Can we leak without a flush?

Discovery

clflush is not needed - a speculative access of map1

induces a cache-line conflict, making ZombieLoad feasible in

a sandbox �

15 USENIX Security ’22 Catherine Easdon (7@cat easdon) — Dynatrace Research & TU Graz

Prototyping with SCFirefox

SCFirefox.init();

SCFirefox.pin_to_core (3);

SCFirefox.calibrate_flush_reload ();

SCFirefox.scfirefox_memset(map1 , ’0’,

4096);

var map1 = SCFirefox.open_shared_memory

(4096);

var map2 = (map1 , 4096, SCFirefox.

PROT_WRITE);

SCFirefox.clear_addr_page_bit(SCFirefox

.get_virtual_addr(map2), 0,

SCFirefox.PAGE_BIT_ACCESSED);

• SCFirefox lets us quickly port our

native code and begin replacing each

building block

• But JSAPI overhead means core
attack code must still be in pure
JS/WASM

• Spectre v1 gadget

• WASM timer thread

• Evict+Reload covert channel

16 USENIX Security ’22 Catherine Easdon (7@cat easdon) — Dynatrace Research & TU Graz

Prototyping with SCFirefox

SCFirefox.init();

SCFirefox.pin_to_core (3);

SCFirefox.calibrate_flush_reload ();

SCFirefox.scfirefox_memset(map1 , ’0’,

4096);

var map1 = SCFirefox.open_shared_memory

(4096);

var map2 = (map1 , 4096, SCFirefox.

PROT_WRITE);

SCFirefox.clear_addr_page_bit(SCFirefox

.get_virtual_addr(map2), 0,

SCFirefox.PAGE_BIT_ACCESSED);

• SCFirefox lets us quickly port our

native code and begin replacing each

building block

• But JSAPI overhead means core
attack code must still be in pure
JS/WASM

• Spectre v1 gadget

• WASM timer thread

• Evict+Reload covert channel

16 USENIX Security ’22 Catherine Easdon (7@cat easdon) — Dynatrace Research & TU Graz

Prototyping with SCFirefox

SCFirefox.init();

SCFirefox.pin_to_core (3);

SCFirefox.calibrate_flush_reload ();

SCFirefox.scfirefox_memset(map1 , ’0’,

4096);

var map1 = SCFirefox.open_shared_memory

(4096);

var map2 = (map1 , 4096, SCFirefox.

PROT_WRITE);

SCFirefox.clear_addr_page_bit(SCFirefox

.get_virtual_addr(map2), 0,

SCFirefox.PAGE_BIT_ACCESSED);

• SCFirefox lets us quickly port our

native code and begin replacing each

building block

• But JSAPI overhead means core
attack code must still be in pure
JS/WASM

• Spectre v1 gadget

• WASM timer thread

• Evict+Reload covert channel

16 USENIX Security ’22 Catherine Easdon (7@cat easdon) — Dynatrace Research & TU Graz

Prototyping with SCFirefox

SCFirefox.init();

SCFirefox.pin_to_core (3);

SCFirefox.calibrate_flush_reload ();

SCFirefox.scfirefox_memset(map1 , ’0’,

4096);

var map1 = SCFirefox.open_shared_memory

(4096);

var map2 = (map1 , 4096, SCFirefox.

PROT_WRITE);

SCFirefox.clear_addr_page_bit(SCFirefox

.get_virtual_addr(map2), 0,

SCFirefox.PAGE_BIT_ACCESSED);

• SCFirefox lets us quickly port our

native code and begin replacing each

building block

• But JSAPI overhead means core
attack code must still be in pure
JS/WASM

• Spectre v1 gadget

• WASM timer thread

• Evict+Reload covert channel

16 USENIX Security ’22 Catherine Easdon (7@cat easdon) — Dynatrace Research & TU Graz

Prototyping with SCFirefox

SCFirefox.init();

SCFirefox.pin_to_core (3);

SCFirefox.calibrate_flush_reload ();

SCFirefox.scfirefox_memset(map1 , ’0’,

4096);

var map1 = SCFirefox.open_shared_memory

(4096);

var map2 = (map1 , 4096, SCFirefox.

PROT_WRITE);

SCFirefox.clear_addr_page_bit(SCFirefox

.get_virtual_addr(map2), 0,

SCFirefox.PAGE_BIT_ACCESSED);

• SCFirefox lets us quickly port our

native code and begin replacing each

building block

• But JSAPI overhead means core
attack code must still be in pure
JS/WASM

• Spectre v1 gadget

• WASM timer thread

• Evict+Reload covert channel

16 USENIX Security ’22 Catherine Easdon (7@cat easdon) — Dynatrace Research & TU Graz

Attack PoC

• Attack scenario: trick victim into opening a link and reading

or leaving the tab idle for > 5 minutes

• Leak 1.48 B/s with 88.8% accuracy

• Comparable to RIDL PoC (1B/s) [Sch+19a]

• But: need to reliably be on the same core

17 USENIX Security ’22 Catherine Easdon (7@cat easdon) — Dynatrace Research & TU Graz

Attack PoC

• Attack scenario: trick victim into opening a link and reading

or leaving the tab idle for > 5 minutes

• Leak 1.48 B/s with 88.8% accuracy

• Comparable to RIDL PoC (1B/s) [Sch+19a]

• But: need to reliably be on the same core

17 USENIX Security ’22 Catherine Easdon (7@cat easdon) — Dynatrace Research & TU Graz

Attack PoC

• Attack scenario: trick victim into opening a link and reading

or leaving the tab idle for > 5 minutes

• Leak 1.48 B/s with 88.8% accuracy

• Comparable to RIDL PoC (1B/s) [Sch+19a]

• But: need to reliably be on the same core

17 USENIX Security ’22 Catherine Easdon (7@cat easdon) — Dynatrace Research & TU Graz

Attack PoC

• Attack scenario: trick victim into opening a link and reading

or leaving the tab idle for > 5 minutes

• Leak 1.48 B/s with 88.8% accuracy

• Comparable to RIDL PoC (1B/s) [Sch+19a]

• But: need to reliably be on the same core

17 USENIX Security ’22 Catherine Easdon (7@cat easdon) — Dynatrace Research & TU Graz

Summary

• First step towards establishing a methodology and tooling

for microarchitectural attack development

• Facilitate attack development and communication by

tackling PoC complexity

• libtea and SCFirefox are available on Github at

https://github.com/libtea/frameworks -

contributions welcomed!

18 USENIX Security ’22 Catherine Easdon (7@cat easdon) — Dynatrace Research & TU Graz

https://github.com/libtea/frameworks

Summary

• First step towards establishing a methodology and tooling

for microarchitectural attack development

• Facilitate attack development and communication by

tackling PoC complexity

• libtea and SCFirefox are available on Github at

https://github.com/libtea/frameworks -

contributions welcomed!

18 USENIX Security ’22 Catherine Easdon (7@cat easdon) — Dynatrace Research & TU Graz

https://github.com/libtea/frameworks

Summary

• First step towards establishing a methodology and tooling

for microarchitectural attack development

• Facilitate attack development and communication by

tackling PoC complexity

• libtea and SCFirefox are available on Github at

https://github.com/libtea/frameworks -

contributions welcomed!

18 USENIX Security ’22 Catherine Easdon (7@cat easdon) — Dynatrace Research & TU Graz

https://github.com/libtea/frameworks

Any questions?

Acknowledgements

We would like to thank Martin Deixelberger, Moritz Lipp, Claudio Canella, Jo van

Bulck, Christopher Fletcher, our expert interviewees, and our user study participants

for their contributions to this project.

This work was supported by generous gifts from Red Hat, Arm, Amazon, and

Cloudflare. All research findings and opinions are those of the authors and do not

necessarily reflect the views of the funding parties or of the authors’ affiliations.

SCFirefox is not officially associated with Mozilla or its products.

19 USENIX Security ’22 Catherine Easdon (7@cat easdon) — Dynatrace Research & TU Graz

References

[Sch+19a] S. van Schaik, A. Milburn, S. Österlund, P. Frigo, G. Maisuradze, K. Razavi,

H. Bos, and C. Giuffrida. RIDL: Rogue In-flight Data Load. In: IEEE S&P. 2019.

[Sch+19b] M. Schwarz, M. Lipp, D. Moghimi, J. Van Bulck, J. Stecklina, T. Prescher, and

D. Gruss. ZombieLoad: Cross-Privilege-Boundary Data Sampling. In: CCS. 2019.

[Sch19] S. van Schaik. Intel Skylake Microarchitectural Diagram. 2019. url:

https://mdsattacks.com/images/skylake-color.svg.

20 USENIX Security ’22 Catherine Easdon (7@cat easdon) — Dynatrace Research & TU Graz

https://mdsattacks.com/images/skylake-color.svg

	Systematization
	Frameworks
	Case Study: Zombieload.js
	References

