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Picture: https://counseling.education/counseling/substance_use/online_marketplaces.html
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DNM measurements 
influence policy-making

Darknet Marketplaces (DNMs) 
measurements influence law 

enforcement
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Marketplaces 
encourage users to 

leave reviews

5

Reviews and listing 
price are used to 
estimate a lower 

bound of revenue



There’s substantial literature 
on online anonymous marketplaces,

but little validation

We show the magnitude of losses
and biases by comparing ground truth

versus scraped data

We test the effectiveness of
various scraping designs and

coverage estimation techniques
through simulations
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Background

Quantifying
losses

Designing 
improvements
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Previous work lacks methodological consistency and validation
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Marketplace
back-end

Collection loss

Previous work lacks methodological consistency and validation
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Marketplace
back-end

Inference loss

Previous work lacks methodological consistency and validation
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14 scrapes

Seized database

We leveraged scraped and back-end data sources…
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Scrape dates: 8-10-2015, 11-10-2015, 16-10-2016,
23-10-2015, 25-10-2015, 2-11-2015, 1-12-2015, 13-12-2015,      
7-1-2016, 17-1-2016, 30-4-2016, 8-6-2016, 7-7-2017, 14-7-2017

Seize date: 20-07-2017 
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Listings

Reviews

Vendors

Listings

Reviews

Vendors

?54%

We leveraged scraped and back-end data sources… and calculated coverage
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More digital 
goods listings

More weed
listings
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More reviews
+++ A+++

Less reviews
+++A+++

Listings are biased in price, reviews and category (among others)
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Total market

Only a quarter of revenue is captured due to collection and inference losses
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Observed
revenue

Total market

Only a quarter of revenue is captured due to collection and inference losses

14



Reviews: scraped Reviews: back-end Orders: full price, quantity & shipping Total revenue
0

$5 million

$10 million

$15 million

$20 million

$25 million

$30 million

$35 million

$40 million

$45 million

$50 million
$ 22.7 million

$ 13.2 million

$50.1 million

1515Quantifying losses Designing improvementsBackground
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$ 14.2 million
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Observed
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loss
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Only a quarter of revenue is captured due to collection and inference losses
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New Listing
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Day n

# of 
events

Probability Space at n
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To understand how to improve our collection, 
we simulated artificial marketplaces and scrapers

Events
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Day n Day n+1
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To understand how to improve our collection, 
we simulated artificial marketplaces and scrapers

New
Listing

New 
ReviewEvents
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Stealthy Overt 10 stealthy scrapes yielded 
53% avg. coverage
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DNM measurement requires stealthy scraping; 
good coverage and stealth require frequent scraping

*

*Over a 1-day period
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Silver Cigarettes

3 reviews

20

Time

T

T+1

T+2

Golden Cigarettes

3 reviews

Silver Cigarettes

3 reviews

Golden Cigarettes

7 reviews

Silver Cigarettes

3 reviews

Golden Cigarettes

9 reviews

Discovered 2 listings

Re-scraped 2 listings & 
estimated popularity

Guiding the scraper to more popular listings gained an avg. 9% of coverage

Re-scraped our popular listing 
and discovered a new one

Green Cigarettes

4 reviews

Complete algorithm details in the paper!

❌



Inform measurement
studies

</html>

Better understanding
of bias/losses

Validation of 
validation techniques*

Better scraping
design

Use simulations
for analysis

Our study provides a new lens for past studies, and a framework for future studies

*Details in the paper!
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Code: https://github.com/aledcuevas/dnm-simulation
Data: https://arima.cylab.cmu.edu/markets/index.php
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