Midas
Systematic Kernel
TOCTTOU Protection

Atri Bhattacharyya, Uros Tesic, Mathias Payer
EPFL
(Usenix Security ‘22)
Kernel TOCTTOU Bugs

- Kernels have double-fetch bugs
 - E.g., TOCTTOU (*Time-of-Check-to-Time-of-Use*)
- Common in security-critical software
 - Linux kernel, modules and SECCOMP
 - Hypervisors (KVM)
 - TEEs (TrustZone)
- Powerful CVEs for Linux
 - 2016-8438 – “Complete compromise”
 - 2020-25212 – “… information disclosure”

TOCTTOU bugs exist across security-critical interfaces
Exploiting TOCTTOU Bugs

- Vulnerable syscall reads userspace data
  ```c
  sigaction(signum, *act, *oldact)
  if (*(act->X) < len){...}
  ...
  access(array[* (act->X)]);
  ```
- Attacker needs two userspace threads
 - One thread calls syscall
 - Second thread modifies data

TOCTTOU bugs are easy to exploit
Mitigating TOCTTOU Exploitation

Cause: Different values read over time

Insights

- *Transfer functions* to read from user
- Page tables control access to pages

Fix: Ensure kernel reads the same value

Midas mitigates TOCTTOU bugs throughout the kernel
Midas’ Invariant

"Through a syscall’s lifetime, every read to a userspace object will return the same value."

- Snapshot page on first read
- Read from snapshot on future reads
- Duplicate page on concurrent writes
- Discard snapshot when syscall finishes

Midas implements multi-versioning for userspace pages with a state machine.
Page State Machine

Unprotected Unique

Syscall read

Protected Unique

Any write

Unprotected Copied

Protected, Copied

Syscall read

Syscall end

Target

syscall

rd(X) = 0

rd(X) = 0

syscall end

Attacker

wr(X, 42)
Protecting Golden Pages

Special function for userspace access
• OS explicitly knows userspace reads
• `copy_from_user` function
• Instrument interface to read same data

Hardware-enforced access control
• Permissions specified in page tables
• Writes to read-only pages raise faults
• OS handles page faults

Existing OS/hardware features enables Midas to protect snapshots
Conclusion

Midas systematically mitigates TOCTTOU bugs

- From userspace and kernel
- Leverages page tables and `copy_from_user`

Implements state machine

- Protected/unprotected
- Copied/unique

Low average overhead (average 3.4%)

Midas provides comprehensive low-overhead double-fetch kernel protection

https://hexhive.epfl.ch/midas