Dos and Don’ts of Machine Learning in Computer Security

Daniel Arp, Erwin Quiring, Fergus Pendlebury, Alexander Warnecke, Fabio Pierazzi, Christian Wressnegger, Lorenzo Cavallaro, Konrad Rieck

USENIX Security 2022
Machine Learning already solved many problems in computer security
Machine Learning already solved many problems in computer security

Unfortunately not… 😞
Motivation—Historical Examples

Network intrusion detection: The base rate fallacy
- Intrusion detectors should have low false positive rates (FPR)
- ‘Low’ FPR often still corresponds to large number of false positives

Android malware detection: Spatio-temporal bias inflating performance
- Models trained with access to ‘future’ information
- Unrealistic class balance inflates performance

Overview

1. Identification of common pitfalls
 - 10 subtle issues affecting ML for security
 - Recommendations for avoiding them

2. Survey on the prevalence of pitfalls
 - Review of 30 top papers in security
 - Pitfalls are widespread

3. Case studies demonstrating impact of pitfalls
 - Mobile malware detection
 - Vulnerability discovery
 - Source code authorship attribution
 - Network intrusion detection

Important remark

This work should not be interpreted as a finger-pointing exercise. Any work mentioned as having pitfalls still has important contributions and we identify pitfalls in our own work also.
ML Pipeline and Pitfalls

Data Collection and Labeling
- P1 Sampling bias
- P2 Label Inaccuracy

System Design and Learning
- P3 Data snooping
- P4 Spurious correlations
- P5 Biased parameters

Performance Evaluation
- P6 Inappropriate baselines
- P7 Inappropriate measures
- P8 Base rate fallacy

Deployment and Operation
- P9 Lab-only evaluation
- P10 Inappropriate threat model
1. Paper Selection

2. Review Process

Pitfall is either...

- present *(but discussed)*
- partly present *(but discussed)*
- not present
- unclear from text

3. Authors Feedback
Prevalence Study

- Sampling Bias
- Label Inaccuracy
- Data Snooping
- Spurious Correlations
- Biased Parameters
- Inappropriate Baseline
- Inappropriate Measures
- Base Rate Fallacy
- Lab-Only Evaluation
- Inappropriate Threat Model

Bar chart showing the prevalence of various issues:

- **Present**
- **Partly present**
- **Discussed**
Prevalence Study

Flaws are prevalent even in top research!
Impact Analysis

Android Malware Detection
- P1: Sampling Bias
- P4: Spurious Correlations
- P7: Inappropriate Performance Measures

Authorship Attribution
- P1: Sampling Bias
- P4: Spurious Correlations

Vulnerability Discovery
- P2: Label Inaccuracy
- P4: Spurious Correlations
- P6: Inappropriate Baselines

Network Intrusion Detection
- P6: Inappropriate baselines
- P9: Lab-only evaluation
Impact Analysis

Android Malware Detection
- P1: Sampling Bias
- P4: Spurious Correlations
- P7: Inappropriate Performance Measures

Authorship Attribution
- P1: Sampling Bias
- P4: Spurious Correlations

Vulnerability Discovery
- P2: Label Inaccuracy
- P4: Spurious Correlations
- P6: Inappropriate Baselines

Network Intrusion Detection
- P6: Inappropriate baselines
- P9: Lab-only evaluation
Impact Study: Mobile Malware Detection

What is the problem?

- Merging of data from different sources leads to sampling bias
- Different origins of malware and benign apps can introduce unwanted shortcuts

![Graph showing sampling probability vs number of AV detections for Google Play Store, Chinese Markets, and Other Origins.](image)

- Google Play Store: ≈80%
- Chinese Markets: ≈70%
- Other Origins: Lower probability

References

Impact Study: Mobile Malware Detection

What is the impact?

• Comparison on datasets with (D1) and without (D2) the artifact
• Training of SVM on two different feature sets

Results

• Experimental results show how sampling bias affects results (P1)
• The URL “play.google.com” is among top features in D1 (P4)
• Using Accuracy would have underestimated the presence of bias (P7)

Dos and Don’ts of Machine Learning in Computer Security

- We identify 10 subtle pitfalls affecting the field
- Find that they are prevalent throughout top research
- Demonstrate their impact through case studies

Updates on pitfalls and recommendations:
https://dodo-mlsec.org/